
﻿﻿

 1

by Jennifer Petkus

 3

Introduction
I have been in love with the Enterprise since the original Star Trek show aired in the 1960s.
The ship is an improbable melding of grace and power, implying an advanced technology
is responsible for making such a delicate looking ship possible. When the Enterprise refit
was introduced in the first Star Trek movie, I was even more in love. It is the epitome of
“Starfleet clean,” ships so beautiful they seem ethereal—a far cry from the world weary,
grungy look of Star Wars. Starfleet vessels are largely free of greeblies—details added to
break up surface areas. Instead, the Enterprise refit was detailed through an intricate paint-
ing process that made it shimmer when seem from certain angles. There were both subtle
variations and a larger, barely discernible pattern called “azteking,” that again implied a
technology beyond our ken.

The refit was also bedight with a multitude of light-
ing effects, including collision strobes; navigation/for-
mation lights; deflector dish and warp nacelle glows;
RCS thrusters; and spotlights that shone on the ship’s
registry markings. I’m a little embarrassed to admit—
but not ashamed—that I tear up when I see the space-
dock startup sequence in the first two movies, when
the spotlights turn on in sequence to show the grand,
gray lady waking up.

I’ve been trying to build the Polar Lights 1/350th
scale USS Enterprise refit for more than a decade now.1
It’s one of those very long-term projects that has lan-
guished principally because I’ve been unsure of how
to light it. At first, I tried making a lighting circuit based on simple integrated circuits, like

1	 Actually my efforts at lighting an Enterprise go back to the AMT 1/537th scale kit and Paul M. Newitt’s
Starfleet Assembly Manuals

How to Light the Enterprise

 4

the 555 timer, but there was a limit to what my extremely limited knowledge of electronics
could do. Then a friend gave me an Arduino Uno, essentially a computer on a single chip,
that could, if I learned to program it, power the Enterprise.

Still, the project languished because although the programming wasn’t that difficult, it
would still require a lot of circuitry to make it glow. Then I found a series of tutorials on the
YouTube channel Ostrich Longneck that explained how to fire phasers, light the deflector
dish and go to warp. But it wasn’t until 2020 and an excess of free time allowed me to de-
sign my own lighting circuit.

Starship lighting circuit

Eventually I ended up with a circuit based on two microprocessors, the ATtiny85 and
ATMega328, plus a number of other integrated circuits, transistors, resistors and capacitors.
I’ve managed to get just about every feature I wanted, including some I didn’t even know I
wanted. These features include:

	■ Collision strobes
	■ Navigation/formation lights
	■ Deflector fade up/fade down
	■ Fade up/down blue warp nacelle glow
	■ Impulse engine fade up/down

	■ Photon torpedoes
	■ Phasers
	■ RCS thrusters
	■ Spotlights
	■ Sound effects

The lighting effects are mostly based on the first two Star Trek movies, The Motion Pic-
ture and Wrath of Khan. I’ve made certain decisions about these effects that don’t actually
match every detail from these movies or subsequent movies featuring the refit or the En-
terprise-A. For instance, I’ve decided:

	■ When at impulse, the main deflector and impulse deflection crystal glow amber. The
magnatomic amplification crystal and the warp nacelles do not glow.

	■ When at warp, the main deflector and impulse deflection crystal glows blue. The mag-
natomic amplification crystal and the warp nacelles glow blue.

	■ When at impulse, the impulse engine glows red; it does not glow when at warp
	■ The RCS thrusters only fire when at impulse, not at warp

Some of these decisions are the result of my trying to observe the rules of how starships
operate, even if the movies violate them, but frankly most of them, are the consequences
of the limitations of my programming skills or the limitations of the chips that power the
starship.

In that first category, I believe that the warp nacelles shouldn’t glow when at impulse,
and you see that, for instance, during the Mutara Nebula battle in Wrath of Khan, when the
Enterprise and Reliant are playing pin the tail on the starship. You’ll see the Enterprise pass-
ing over the Reliant, with the warp nacelles dark, because the ship is at impulse or perhaps
even just using the RCS thrusters. But in other movies you’ll see the nacelles glow when at
impulse. I can imagine reasons why the nacelles might glow when at impulse, but not as a

Introduction / Should you do this?

 5

general policy.

Of course, in the same nebula scene, you’ll notice that the impulse deflection crystal
glows blue, when I think it should glow amber, reflecting the Enterprise is at impulse. But,
of course, in the same battle, you’ll see the deflector glowing blue.

Here’s where my pedantic need to impose rules on what is just entertainment collides
and colludes with the limitations of my skills and the limitations of my materials. We’ll go
into this in detail later, but for now I’ll explain that two pins on the ATtiny chip are responsi-
ble for lighting the amber and blue LEDs to represent impulse and warp. The same impulse
pin is responsible for lighting the LEDs for the deflector, crystal and impulse engine. The
problem is that according to that famous spacedock startup sequence, the deflector glows
while in spacedock but the impulse engine doesn’t glow until the ship leaves spacedock.

Unfortunately, there’s no way to accomplish this with the circuit as designed. Every pin on
the on the ATtiny and ATMega is already assigned, so there’s no free pin to separately light
the impulse engine. If I really wanted to, however, I could eliminate one of the two phaser
pins of the ATMega—resulting in always lighting the same phaser emitter—and assign it to
lighting the impulse engine. That’s unappealing because now the impulse lighting effect is
handled by the ATtiny and ATMega, and it would be difficult to coordinate.

I could also do some ugly, low-level reprogramming to turn the reset pin of the ATtiny
into a digital input/output pin, but if you make a mistake, you might end up with a bricked
chip. Admittedly, the chip is pretty cheap and there are ways to fix the chip, but I don’t
think most people would want to attempt this. This is one of those cases where I’m content
to have the impulse engine start while in spacedock.

Should you do this?

Before you decide to build your own starship lighting circuit, I should mention there are
several companies that sell pre-made circuits that will do just about everything you might
desire. Although these circuits aren’t inexpensive—you might spend $250—the cost of
buying all the components you need to build your own add up. This includes a supply of
assorted resistors and capacitors, wiring, breadboards, perfboards, soldering iron, wire
strippers and assorted tools like multimeters, tweezers, pliers and flush cutters. You could
easily spend several times over that $250.

Of course, if you already have a lot of this equipment and components, then the cost
shifts in your favor. For instance, you’ll only need one 16Mhz clock crystal for this project,
but I bought a package of 20 for $7. I have enough components to light three starships. I
was also able to add specific features that I wanted, so my lighting board is unique.

I will warn you that you’re in store for a lot of frustration, interspersed with occasional
cries of success. Several times you’ll be tempted to give up, but I hope this guide will help. I
would be delighted if your design differs from and exceeds mine. In the next chapter, you’ll
find out what you’ll need to know if you attempt this.

How to Light the Enterprise

 6

Development Work Flow

My development work flow should be different, but still
similar to yours. Hopefully I’ve done most of the ugly stuff for
you, but you still might have to do some grunt work if you
decided to add different features to your board.

I started by writing sketches for the Arduino Uno con-
nected to a breadboard. I wrote the ATtiny sketch first (strobes, nav lights and deflector)
because it’s relatively simple. It worked perfectly the first time, but then I had to upload the
sketch to the ATtiny and nothing worked. After a day of scratching my head, I realized that
I had forgot to change the Uno (or ATMega) pin assignments to the corresponding ATtiny
assignments.

Then I wrote the spotlights, weapons, RCS thrusters and sound sketch that would go on
the ATMega. Testing it on the Uno was a slow process as I discovered the mistakes I’d made,
but it was steady progress. Uploading the sketch to the ATMega, however, was very painful
because I’d forgotten the process that you’ll find in the chapter Programming the Micropro-
cessor. Even after I successfully uploaded the sketch, however, I still had problems getting
all the components working. Getting the Adafruit FX Sound Board working was especially
problematic until I told the board to reset in the setup block.

Finally, I had both sketches working and uploaded to the appropriate microprocessors.
The next step was getting both microprocessors and the other ICs and components on a
single breadboard, with the onboard power supply. You can read about these problems in
the More About … chapter.

Of course that wasn’t the final, final step. I had to transfer everything to the solderable
perfboard and of course I made mistakes. I’m sure you will make mistakes, which is why
you’ll need the de-soldering tools mentioned in the What You’ll Need chapter.

If you decide not to add any features or make any changes to the sketches, you might be
able to skip the testing on the Uno and proceed to uploading the sketches to the micropro-
cessors. (You’ll still want to test compile the sketches in the Arduino IDE.) But debugging
sketches on the microprocessors is difficult, so if there are any problems, you’ll probably
want to test using the Uno.

I realize this is daunting, but hey, this is easy compared to painting the Enterprise.

I realize that this may seem
like gibberish now, but come
back to it after you’ve read the
rest of this book.

What You’ll Need to Know / Soldering

 7

What You’ll Need to Know
This book is not intended to teach you everything you need to know before you start build-
ing your starship lighting circuit. I’m afraid you’ll either need to already have certain skills or
acquire them before you start. It’s outside the scope of this book to teach you these skills.
So, what are we talking about:

Soldering

Although you could build the lighting circuit on breadboards, which requires no wiring,
they’re not suitable for long-term use. A breadboard circuit has a lot of noise because the
connections are tenuous—just a friction fit really. Also, components and jumper wires can
easily come loose, and breadboards are bulky.

So, you will need to know how to solder components to a prototyping board, and the
only way to learn is to practice. Fortunately, if you just type “how to solder” in YouTube’s
search bar, you’ll find numerous tutorials. Watch of few of these and you will learn the ba-
sics. After that, it’s just practice.

I do feel like I should offer some pearls of wisdom, however. There are a few things I’ve
done or learned that have greatly improved my soldering skills.

	■ I bought a really nice soldering iron with a digital temperature control readout
	■ I have vises and clamps to hold my work steady
	■ I’ve learned to compulsively clean and re-tin the soldering tip
	■ I’ve learned to apply solder to the part(s) I’m trying to connect, not the soldering tip
	■ Pre-tin any wires and any pads to which you’re soldering

We’ll address the soldering iron and the vises and clamps in the What You’ll Need chapter.
Let’s look more closely at the last two tips.

How to Light the Enterprise

 8

Clean and re-tin
It’s extremely important to constantly clean and re-tin the soldering tip, otherwise you’ll
need to constantly buy new tips. Solder tips oxidize (corrode) because of the high tempera-
tures involved, but a clean tip protected by a coating of solder will last a long time.

If I’m soldering a resistor to a perfboard, for instance, I’ll first drag the tip across a wet
sponge, then through a brass scouring pad, add fresh solder—just a little—to the tip and
immediately solder one leg of the resistor to the board.

Then I drag the tip across the wet sponge again, then through the scouring pad, re-tin
and immediately solder the remaining leg. After several soldering several components, I’ll
instead clean the tip with the sponge and scouring pad and then put the tip in a small jar
of tip tinner, run it through the scouring pad and then add a little solder.

Whenever I have to put the soldering iron back in its cradle, I clean and re-tin the tip with
solder, even if I’m pausing for a few seconds. Of course I sometimes to forget, but I mostly
remember to clean and re-tin after each use.

Solder the part, not the tip
Apply the soldering tip to the thing you’re connecting to, like the circular pads on a perf-
board, and the thing you’re connecting, like the leg of the resistor. Touch the solder to the
pad, not to the tip of the soldering iron. The idea is not to add a lot of solder to the iron and
hope it leaks onto the thing you want to attach. The idea is to heat the two parts and apply
solder to the parts, allowing capillary action to draw the solder into the spaces between
the parts.

Pre-tin wires and pads
You’ll avoid overheating integrated circuits and other components like LEDs if you pre-tin
any wires or soldering pads. If I’m soldering a resistor to an LED, for instance, I’ll first tin the
legs or leads of the LED and the resistor before attempting to solder them together. You’ll
find pre-tinned leads join much more quickly, preventing overheating of components.

Use flux when needed
You can usually guess when a soldering connection will be difficult, like joining a small
thing to a large thing, two large things or two tiny things. A dab of flux will make the job
easier. However, remember to …

Clean up after soldering
Soldering rosin and flux can leave a lot of residue that could either corrode or cause un-
wanted short circuits. You should clean the residue with flux cleaner, or make your own
with a 50/50 mix of isopropyl alcohol and acetone

Programming

This book also isn’t intended to teach you basic programming concepts. It’s up to you to
learn the basic concepts of variables, loops, if statements and programming blocks. Fortu-

What You’ll Need to Know / Electronics

 9

nately, the two sketches that make up our starship lighting circuit are very simple, and any
previous programming experience is all that’s required to become familiar with C++.

C++ and Arduino programming is new to me, and I was constantly googling the syntax
of basic functions. When I didn’t find the answers, I found repeatedly slamming my head
against the desk does work … after a day or so. In one case, I went to the Adafruit support
board and posted a question and got no replies. So, I started replying to myself, suggest-
ing what might be wrong and eventually answered my own question. It did take two days,
though.

Electronics

Again, I can’t teach you electronics. I barely understand it myself, and frankly, you don’t re-
ally need to know a lot to make the circuit. If you follow the diagrams precisely, you’ll have
no problems (assuming I’ve made no mistakes).

But following the diagrams can be extremely difficult. I spent two days trying to figure
out why the final circuit wasn’t working. Luckily, I have the habit that if a circuit I’m build-
ing isn’t working as expected, I immediately kill the power. Thank goodness, because what
I’d done is connect one of the ATMega pins to power, not ground, and had created a short
circuit. The circuit was drawing more and more power until the resettable fuse kicked in.

I didn’t realize this immediately, however, and tried other remedies. I’d re-connect the
circuit to power, see it wasn’t working and kill the power. I spent hours looking at the circuit
wondering what I’d done wrong. It wasn’t until I touched the resettable fuse and found it
hot that I realized I must have a short circuit, but I still couldn’t see my mistake. It wasn’t un-
til I removed the ATMega and saw that the ATtiny was working that I realized what I’d done
wrong. Fortunately the fuse did exactly what it was supposed to do.

One great way to learn both Arduino programming and electronics is at TinkerCad. This
is a free website that lets you prototype circuits virtually. You can even program a virtual
Arduino and hook it up to a virtual breadboard containing virtual components. The advan-
tages are you don’t need to buy an Arduino and you’ll always have the right value resistor
or capacitor. It’s much easier to wire a virtual breadboard and if you make a mistake, you’re
only burning out a virtual component.

There are disadvantages, of course. TinkerCad supplies a lot of components, but not, for
instance the ULN2803A Darlington array or the Adafruit Sound Board, so you can’t test
these out. Nor does it allow you to load additional libraries, like LedFlasher1 or arduino-tim-
er; you’re limited to the standard “built-in” libraries.

Nevertheless, I was able to virtually test parts of my circuits and sketches and then put it
all together in the real world.

1	 I was able to copy out the code of the LedFlasher and paste it into the top of my sketch. Basically, I was
creating a class within the sketch instead of using an #include to load it.

How to Light the Enterprise

 10

Debugging

You’re going to make a mistake somewhere, either with the electronic components or the
sketches. To figure out the problem, use the 50/50 method. In programming, you do it like
this. Somewhere in your sketch you’ve made a mistake, but you don’t know where. Either
the sketch won’t compile or it doesn’t do anything. The error message the Arduino IDE re-
turns is cryptic and unhelpful. Or worse yet, you’re uploading a sketch directly to the ATtiny
or ATMega and there are no error messages.

To find the problem, comment out half your code. Of course, you’ll also need to com-
ment out any calls that refer to the half of the code you commented out. Upload the sketch
again—it still won’t do anything, but if it suddenly compiles, then whatever programming
faux pas you’ve committed is somewhere in the code you commented out. Then uncom-
ment half of that code and if it still compiles or at least some of the lights are blinking, then
the problem is in the remaining uncommented code, or vice versa.

You can debug the circuit the same way. Strip away half the circuit and if it works, the
problem was in the half you removed. You might move the ATtiny and everything connect-
ed to it—transistors, MOSFET, resistors, to a separate breadboard, give it power and see if it
works.

Another trick is to recreate the problem in TinkerCad, if possible. That might not be pos-
sible if it involves a component or library unavailable in TinkerCad, but you can probably
still recreate some part of the circuit. Perhaps you inserted a transistor into the breadboard
backwards. That mistake will be a lot more obvious in TinkerCad because it labels the pins
of the transistor, and suddenly you’ll realize you’re tying the emitter to ground instead of
the collector.

What You’ll Need / Breadboard

 11

What You’ll Need
At a minimum, you’ll need these tools:

	■ Breadboards, on which you’ll test circuits
	■ Jumper wires to connect the components on the breadboard
	■ Solderable perfboards, on which you’ll mount your finished circuits
	■ Wiring: I bought an assortment of 26- and 30-gauge wiring in six colors
	■ Soldering iron and solder
	■ Wire strippers capable of stripping the wiring mentioned above
	■ Tweezer and pliers

You might also want:

	■ Chip removal and insertion tools: it’s very easy to bend the legs of ICs as you insert or
remove them from a breadboard. These tools are cheap and very handy.

	■ Multimeter: I use mine primarily to check continuity, voltage and resistor values—oc-
casionally for amperage

	■ Third hand tool and/or vise for holding wiring and components while soldering
	■ Crimping tool for making Dupont and JST connectors

I have a dedicated modeling desk with several work lights to see what I’m doing

	■ Resistors and capacitors are best bought as assortments, with individual purchases
required if you lack specific values

Breadboard

You use breadboards to build and test your circuits. You can plug components into the
breadboard without soldering and connect them with jumper wires that again simply plug
into the holes of the breadboard. In the full-size breadboard shown above, you can see that
the columns are connected, so each hole in a column has an electrical connection to the
hole below. The holes are spaced 0.1” (2.54 mm) apart, which more or less corresponds to

A
B
C
D
E

F
G
H
I
J

1 10 15 20 25 30 35 40 45 50 55 605

Columns are
connected

This gap separates
top and bottom
rows and columns

These rows are
connected

Some breadboards have
gaps in the power rails

How to Light the Enterprise

 12

most components, such as the spacing of the legs of an IC.

The top and bottom rows are connected and are used as power rails, so a positive voltage
or ground connected to any hole in the row is available to all the holes. In some bread-
boards, however, there’s a break in the middle, which allows you to have a different volt-
age like 3.3V on the left and 5V on the right. Jumper wires can bridge the break to make
a continuous voltage. There’s another break in the middle of the board that separates the
columns in the top half from those in the bottom, and also breaks the power rails at the top
from those at the bottom. Often a jumper is used to connect the power rails top and bot-
tom.

Integrated circuits—or chips—are inserted into the breadboard horizontally, straddling
the gap through the middle. Jumpers plugged into the holes above and below the chip
then connect directly to the pins of the chip.

Breadboards are used for prototyping—seeing if the thing works—and are not intended
for long term use. Just plugging a wire into a hole is a tenuous connection and jumper
wires often break free, confounding you if you didn’t notice.

Solderable
prototyping or
perfboard

For permanent
use, you will want
to solder compo-
nents onto a solderable perfboard (also called a solderable prototyping board). A perf-
board has the same spacing as a breadboard, and there’s a lot of different layouts. In the
picture above, the first example shows connected rows. The second example has individual
pads and the last has holes but no solderable pads.

I really like the Adafruit Perma-Proto Breadboard PCB, which
comes in quarter-, half- and full-width sizes. These boards are
clearly labeled and have the same layout as a breadboard, making
it easy to transfer a circuit designed on a breadboard.

Soldering iron

Get a decent soldering iron with a temperature selector. I have a
Hakko FX888D that costs about $100, but you could find a good
Weller variable temperature soldering station for under $40. A
soldering station usually includes a holder and a sponge for tip cleaning. The Hakko has an
additional coiled brass tip cleaner. I can precisely set the Hakko for 500° F, which adequate-
ly melts the solder but doesn’t destroy the tip.

A
B

C
D

E
F

G
H

I
J

+ +

– –

+ +

– –

A
B

C
D

E
F

G
H

I
J

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

What You’ll Need / Dupont/JST crimper

 13

By the way, solder is usually composed of lead, tin and rosin. You’ll want good ventilation
to remove the rosin fumes and you should wash your hands after handling solder.

You’ll probably also want a solder remover tool and/or de-soldering wick, for when you
make a mistake and need to remove a component.

Another good investment is a third-hand tool and/or vise, but most modelers already
have these. And finally, locking tweezers or heat-sink clamps would be useful to prevent
overheating components, but again, most modelers probably have these.

Dupont/JST crimper

You can soldering connecting wires directly to the perfboard, but there are many places
where it would be nice to have a connector that can be easily attached/removed. I’ve
bought a crimping tool to make Dupont header pins and JST-XH connectors. The crimping
too is not a must have, but I prefer neat and tidy wiring and hope to avoid the nightmare of
spaghetti wires into the saucer section.

Arduino

You will need some flavor of an Arduino, and I’d
recommend getting an Arduino Uno because it
uses the same chip you will use on the starship
lighting circuit. It comes with header pins (actu-
ally the female half) that make it easy to run a
jumper wire from the Uno to a breadboard. You
could probably buy a cheaper Arduino clone, but
at $23, I think you’ll be better off getting a genu-
ine Arduino. You could probably also get an Arduino Nano, but you’ll need to plug it into a
breadboard or use a shield to make easy connections, at which point you’ll basically have
an Arduino Uno.

Incidentally, there is an Arduino Mega 2560 that has a lot more input/output pins than
the Uno. You probably don’t want to use this because it uses a different processor than
the ATMega328. I mean you could, but you’d have to keep changing the pin numbers
when testing on the Arduino Mega 2560 and when uploading to the ATMega328. You
might also be tempted to use those extra pins, only to find out they’re not available on the
ATMega328. Also, I think the ATMega 2560 chip is only available in a surface mount design,
making it nearly impossible to use with a perfboard.

Bench power supply

You may wonder why you need a bench power supply, considering that we’re making a
5V supply right on the main board. But it’s very nice to have a variable supply with a lot of
amps to power your circuits without having to create a power supply from scratch each

How to Light the Enterprise

 14

time.

A bench power supply is a luxury item to be sure, but it certainly comes in handy if you
make a lot of circuits. I’ve made a little variable supply using an LM317 voltage regula-
tor and there are a ton of tutorials that cover this. You can buy a bench power supply for
$50–75. Another popular option is to cannibalize an old ATX power supply, which will
have steady 3.3, 5 and 12V output. Just trim away the wires you don’t need. You’ll need to
add some plugs and a case, but it’s very simple. If you want to get more ambitious, add a
variable supply using an LM317 and a digital readout that shows voltage and amperage.
The latter is extremely useful in determining what size power adapter you’ll need for the
finished model. If you see that your circuit is drawing 1.4 amps, then you’ll know you need
a 2 amp power supply. Note: Give yourself room on power supplies. Using a 1.5 amp supply
would probably run hot.

Multimeter

Of course, if you have a multimeter, that will also show you how many amps your circuit is
drawing. You don’t need a very fancy multimeter for this project. You’ll mostly be checking
continuity—whether there’s a solid connection between components. I occasionally use a
multimeter to double-check the value of a resistor if I’m too lazy to look it up. And as men-
tioned, I also use it to determine the current draw of a circuit.

In the next chapter, we’ll take a closer look at the components you’ll be using in the final
circuit.

﻿﻿

 15

How to Light the Enterprise

 16

Lights and sound
There are a mind-numbing number of lights on the Enterprise refit and, of course, it’s up to
you whether to include every light and lighting effect. If all you want to do is get the col-
lision strobes and navigation lights flashing that’s perfectly understandable. My goal was
more ambitious and if you’re reading this, I suspect yours as well.

Spotlights

One of the most maddening lighting effects on the refit are the spotlights. I’m sure anyone
who is attempting to light a refit are already aware of the problems, but to summarize, in
some places it’s very difficult to make a spotlight shine on that spot or even physically im-
possible. Most of the spotlight effects on the filming model were accomplished with exter-
nal lighting. How you achieve this impossible lighting is up to you, but most people resort
to the Raytheon effect. Just Google it if you’re unfamiliar.

I count 25 spotlights or spotlight lighting effects on the model, but if you following the
spacedock lighting sequence, you can group these lights into seven locations. There’s an
excellent lighting reference on YouTube that shows the exact time the spotlights activate
and in what order.

Nacelle pylons
There are spotlights shining on the outboard and inboard sides of the nacelle pylons. Un-
fortunately, the angle of the spots could not possibly produce the round glow effect seen
on the pylons.

Nacelle front
There are two spotlights at the front of the nacelle. The outboard spot shines on the edge
of the saucer near the RCS thruster quadrant. The inboard spot probably shines just to the
outside of the impulse engines.

Lights and sound / Startup sequence

 17

Saucer pylon
There are two spotlights on either side of the base of the pylon that connects the engi-
neering hull with the saucer. One is certainly responsible for the large oval lighting effect
seen on the side of the pylon, but the angle of the spotlight to the pylon could not possibly
produce that effect. The other spotlight seems to shine up to the impulse engines, however
that conflicts with the inboard spot at the front of the nacelle, which also seems to shine on
the impulse engines.

Nacelle rear
There are two lighting effects both inboard and outboard on the registry at the rear of the
nacelle. There’s no logical source for this lighting except for something like electro-lumines-
cent paint?

Saucer above
There are three clearly identifiable spotlights at the base of the bridge (A deck) that shine
port, starboard and forward. It’s difficult to get these lights to actually shine on the saucer
as shone, but it is just possible by slightly increasing the height of A deck. To reproduce
what’s seen in the movie, however, requires the Raytheon effect.

There is no visible source, however, for the spotlight that shines on the registry aft of the
VIP lounge and will require the Raytheon technique to reproduce.

Saucer below
Fortunately, the source of the four spotlights that emanate from the planetary array on the
underside of the saucer are obvious, however it is difficult to angle the lights to produce
the movie lighting.

Engineering hull
There are spotlight effects on either side of the engineering hull shining on the Starfleet
pennant, but there’s no logical light source. There’s another spotlight found on the under-
side of the engineering hull emanating from the bulge that’s the cargo bay tractor beam
emitter. It shines on the large cargo hatch. Finally, there’s a spotlight shining on the name
of the ship on the lip of the main shuttle bay with no logical light source.

Startup sequence

Based on the lighting reference mentioned earlier, you can see that in order:

1.	 The spotlights at the base of the nacelle pylons light;
2.	 then the spotlights at the front of the nacelles;
3.	 next the spotlights at the base of the saucer pylon;
4.	 the lights on the registry at the rear of the nacelles;
5.	 the lower saucer spotlights;
6.	 the upper saucer spotlights;
7.	 and finally, the spotlights shine on the pennants on the engineering hull.

How to Light the Enterprise

 18

The RCS thrusters glow when at step four when the registry is lit on the nacelles and I
assume all the thrusters throughout the ship glow. The deflector dish also glows at step
seven and I’ve decided that’s when the collision strobes and navigation lights should begin
flashing. I’ve also decided that’s when the tractor beam spotlight activates.

Apart from the seeming impossibility of some of these
spotlights, the biggest puzzle is the source of the light-
ing of the impulse engines and the Starfleet pennant on
the engineering hull. In the YouTube lighting reference
referred to earlier, it’s clear that both the outboard and
inboard spotlights at the front of the nacelles light at
the same time. Is the inboard spotlight shining on the
impulse engines?

Two seconds later, the spotlights at the base of the
saucer pylon light. The forward spot seems to light the
pylon while the rear spot seems to shine on the impulse
engines.

I think it makes more sense that the inboard spot on
the nacelle shines on the engineering hull and the rear
saucer pylon spot lights the impulse engines.

Which, of course, conflicts with the lighting of the en-
gineering hull pennant at 11 seconds. The only way to
reconcile this is to either assign the pennant lighting to
luminescent paint or decide the inboard spot does not
light at the same time as the outboard spot.

That decision is up to you. If you decide to light the
two forward nacelle spots at different times, you’ll need
two wires going to the nacelle for that purpose.

RCS thrusters

There are far more RCS thrusters than the eight pins on
the 74HC595 chip that is used to light them. However,
if we group the thrusters, we can come up with eight.
The thrusters on the saucer, for instance, are already
grouped into four quadrants, even if each quadrant has
separate upper, lower and side thrusters. We can do the same for the thrusters at the ends
of the nacelles and just treat upper, lower and side thrusters as a unit. That gets us up to six.

There are four thruster locations that ring the deflector dish, but we can group these into
port and starboard thrusters, for a total of eight groups.

Now, as shown in the startup sequence, the thrusters are always faintly lit. It’s up to you

Lights and sound / Window lighting

 19

how you want to handle this, but I’ve decided that where possible I’ll run fiber optic to each
thruster from window lighting and where necessary I’ll run an always on LED. What is not
possible, however, is to match the lighting of the RCS thrusters in step four. They will ap-
pear lit the moment power is supplied to the circuit.

Window lighting

Window lighting is provided by LED strips placed throughout the ship. Unfortunately,
there’s no way to control the intensity of the LED strips because we’ve run out of pins on
our two processors. We would need a PWM pin for this purpose, and that would require
reassigning a pin (perhaps the second phaser pin) and some shuffling to make a PWM pin
available.

There are a few workarounds, however. If your power supply adapter (the wall wart) can
be set to different voltages, you can select 9V instead of 12V. It will be a little bit dimmer,
but probably not much. You could buy a dimmer for the LED strip, but it might look out
of place, especially if the hardware is obtrusive. (Dimmers with a remote control would be
preferable.)

Or, if you have a spare 555 timer, you could make a PWM dimmer. Because there’s no
room for it on our board, you’ll need a separate perfboard. You’ll end up with a potentiom-
eter and a MOSFET connected to a 555 to dim the LED strips.

Of course, at $1.30 for a 555, you might consider just buying another ATtiny85 for $1.64
(these are prices for individual components at Mouser.com). You’d only need two of its five
pins, leaving you three more pins to add additional functions. You could even add a sensor
to adjust the intensity of the LED strips depending on whether it’s day or night. Or, you can
just live without the ability to dim the LED strips.

The 555 solution, however, is pretty common and it wouldn’t hurt to learn its many uses.
You can read more about this here.

Photon torpedoes

You’ll need two LEDs to represent the photon torpedoes. You could find rectangular LEDs
or square off standard round LEDs to fit into the torpedo launchers.

Phasers

There are 12 phaser emitters on the refit, but we only have two pins dedicated to lighting
them. If you decide to only light two, I suggest picking one above and one below. If you
decide to route the phaser pin output through transistors, you could, of course, light sever-
al LEDs from each pin.

How to Light the Enterprise

 20

PWM lighting

Several of the light sources on the model are connected to the impulse and warp pins on
the ATtiny, via either a transistor or a MOSFET. The deflector dish and the impulse deflec-
tion crystal are connected to both. The magnatomic amplification and the warp nacelles
are connected to the warp pin. And the impulse engine is connected to the impulse pin.
If you decide to use the 555 timer mentioned above, the window lighting would also be
controlled by PWM.

Additional lighting

The additional lighting on the ship is of two types, fiber optic and individual LEDs. There is
a docking port aft of the bridge, two on either side of the engineering hull, one on the port
side of the saucer (it is rectangular instead of round). There are lights illuminating these
ports and you’ll probably have to rely on fiber optic to light them.The main shuttle bay en-
trance also has a number of lights that might also require fiber optic lighting or SMDs.

Shuttle bay landing lights

One feature that Enterprise-A modelers might want to include is the shuttle bay landing
lights seen in the fifth Star Trek movie. This is basically just an LED chaser sequence that
could be simulated with the 74HC595 that’s already being used to light the RCS thrusters.

Your options are to re-purpose the 595 for this—lose the RCS thrusters to get the landing
lights. You’ll still need to free up an additional pin that’s connected to a button if you want
to trigger the effect, although you could just make this a random feature activated by the
sketch.

Or, you could daisy chain another 595 to the first, giving you and additional eight out-
puts. This doesn’t require additional pins on the ATMega328 other than the aforemen-
tioned button pin. It’s pretty simple and it’s addressed in the More about chapter.

Another option is to power the landing lights with a 555 timer connected to 4017 decade
counter. A decade counter can sequentially power its ten output pins based on a clock sig-
nal sent by the 555. There’s more about the 4017 in the More about chapter.

Additional microprocessors

Many of the lighting conundrums presented here could, of course, be reconciled by adding
more microprocessors or using larger microprocessors (with more input and output pins).
Instead of an ATtiny and ATMega you could opt for two ATMegas. Or use an Arduino Nano,
which although it’s based on the ATMega328, uses the surface mount version of the chip
that has additional pins.

So really it’s up to you what features you want to include or what microprocessors you
use. This guide is just a starting point.

More About ... / Arduino Uno

 21

More About ...
Before we begin, I thought I’d warn you about a common “gotcha” you might encounter
when dealing with integrated circuits. This involves the numbering of the pins or legs on
the ATMega328 and the ATtiny85. On an IC, legs or pins are numbered sequentially in an
anti-clockwise fashion starting from the top left of a chip. There’s usually an indent on one
end of a chip to indicate the top, and often there’s a circular depression to indicate pin one.

However, the physical numbering of pins rarely has anything to do with the pin assign-
ments you’ll specify when writing a sketch. In the Arduino Uno shown above, you’ll see the
numbered header pins at the top and bottom of the board. Digital input/output pins 13–0
are on top from left to right, and in the bottom right corner, you’ll see digital I/O pins 14–
19, which also serve as analog input pins A0–A5. These are the numbers you’ll refer to in a
sketch, not the physical layout numbers.

Looking at the ATMega328 chip on the Uno board, you’ll
see that physical pin one is in the upper right. The top of the
chip is facing right. The second pin corresponds to digital I/O
pin zero (which also serves as the receive pin) at the right of
the top header row. Physical pin 14, in the bottom left corner
of the chip, corresponds to digital I/O pin 8. Physical pin 28 is
actually digital I/O pin 19 or analog input pin A5.

Fortunately you can write a sketch that runs on the Arduino Uno, upload that sketch to
an ATMega328, and it will run without a problem because the internal pin assignments are
the same. That’s not the case with the ATtiny85, and we’ll look at that later in this chapter.

Arduino Uno

Let’s take a closer look at the Arduino Uno. The gray box on the upper left is the USB port
that connects the Uno to a computer. The Uno gets 5V from the USB cable. Below the USB

The Arduino IDE knows which
pins do what based on the
microprocessor you select.
You’ll see this process in the
Programming the Micropro-
cessor chapter.

We refer to the header pins
on the Uno, but what you see

is actually the female half
of a Dupont connector, so

technically they’re holes.

How to Light the Enterprise

 22

port at bottom left, you’ll see the external power supply jack. You can power the Uno with a
7–12V external adapter (wall wart).

As mentioned before, you’ll see the header pins across the top and bottom. The top row
contains a GND pin and digital I/O pins 13–0. You can ignore the AREF pin. Just below the
left side of the header pins you’ll also see three LEDs. The top one is connected to pin 13,
and that’s the LED you’ll see blink if you upload the beginner “Blink” sketch to the Uno. The
other two LEDs correspond to the pins 0 (RX) and 1 (TX). You’ll see those flash when you
upload a sketch to the Uno.

The bottom header row includes reset, 3.3V, 5V, GND, Vin and the five analog pins. You
can ignore the IOREF pin. Although there’s a reset button on the Uno, it may be beneficial
to have an external button wired to the pin, if you have enclosed the Uno. You won’t need
the 3.3V pin. The 5V pin is useful for supplying power to breadboards. And you can never
have too many GND pins. Vin is only valid if you’re using an external power supply, so if
you’re supplying the Uno 12V, you’ll find 12V at this pin.

Arduino IDE

You will need to download the Arduino integrated development environment or IDE in
order to program the Arduino. It’s open source and free and should work with any Arduino,
even those not made by the Arduino company. It can also program chips like the ATtiny85
or ATMega328. When you install the Arduino IDE, it will create an Arduino folder on your
computer where you can add libraries such as the ones used here.

You’ll need a USB cable to connect your computer with the Arduino, but that cable differs
if you have the Arduino Uno (type A/B) or Arduino Nano (type A/mini-B).

ATMega328

As mentioned earlier, the microprocessor on the Arduino Uno is the
ATMega328, and you might think why not just the Uno to power the starship.
You certainly could, but a Uno costs $23. The chip is priced about $2. So, if
you’re lighting several starships, it makes economic sense to buy the chip.
The chip also takes less room than the Uno, although admittedly once you’ve
mounted the chip on a perfboard and added a power supply, that advantage
disappears.

Connections
At a minimum on a breadboard or solderable perfboard, you will need to
connect the reset pin (pin 1) to ground with a 10KΩ resistor; pins 7 and 8 to
V+ and GND; and pins 21 and 22 to 5V. Because we’re using an external clock
crystal across pins 9 and 10, we’ll also connect those pins to ground with
22pF ceramic capacitors. We could actually get by with even fewer connect-
ed pins and no external clock, but this arrangement works perfectly.

P0RX

P1TX

P2

P3~

RST

P4

VCC

GND

CRS

CRS

P5~

P6~

P7

P8

AI5

AI4

AI3

AI2

AI1

AI0

GND

AR

VCC

P13

P12

~P11

~P10

~P9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

ATMega328

More About ... / ATMega328

 23

Numbered pins 2 and 3 correspond to pins 0 and 1 on the UNO. These are the serial
read and write pins, so they’re unused if you want to have serial communication with the
ATMega. We don’t care about this, so we’re using these two pins as digital output to fire
phasers.

Numbered pins 4–6 and 11–14 are digital output pins connected to the ULN2803A and
control the activation of the spotlights. These pins correspond to pins 2–4 and 5–8 on the
Uno.

Numbered pins 15 and 16 fire the torpedoes, and they’re the same as pins 9 and 10 on
the Uno. Notice on the picture of the chip there’s a ~ next to the pin number, indicating
these are PWM pins.

Numbered pins 17–19 connect to the Adafruit FX Sound Board. Pin 17 connects to the
reset pin of the sound board, 18 to the RX pin of the sound board and 19 to the TX pin of
the sound board. These numbered pins correspond to pins 11–13 on the Uno.

Numbered pins 23–28 are analog input pins, although we only use pin 28 for that pur-
pose. They correspond to pins 14–19 on the Uno. Numbered pin 23 is used as a digital
input connected to the button that triggers the weapons fire. Numbered pin 24 is used as
a digital input connected to the Act pin of the sound board and detects whether a sound is
playing.

Numbered pins 25–27 connect to the clock, latch and data pins of the 74HC595 and are
all digital output. What’s mysterious here is that pin 27 is not a PWM pin, and yet it’s send-
ing out serial data. I have no idea what voodoo makes this possible.

The last numbered pin is 28, and it’s connected to the warp pin of the ATtiny85. Read
more about that about in the chapter on PWM.

Of course, in our sketch, we don’t refer to the physical pin numbering, but rather the
numbers you see on the image above, within the body of the chip. However, one of the
advantages of the ATMega328 is that a sketch written for the Uno runs without a problem
on the ATMega because they use the same internal pin numbering.

Incidentally, there are a number of flavors of the ATMega328. Make sure you order the
long, 28-pin version of the chip rather the square, surface mount version.

ATMega328

1 Reset Warp detect: AI5(P19) 28

2 P0(RX): phaser data: AI4 27

3 P1(TX): phaser latch: AI3 26

4 P2: spotlight clock: AI2 25

5 P3~: spotlight sound detect: AI1 24

6 P4: spotlight weapons button: AI0 23

7 VCC GND 22

8 GND AREF 21

How to Light the Enterprise

 24

9 CRS: external clock VCC 20

10 CRS: external clock sound board TX: P13 19

11 P5~: spotlight sound board RX: P12 18

12 P6~: spotlight sound board reset: P11~ 17

13 P7: spotlight torpedo: P10~ 16

14 P8: spotlight torpedo: P9~ 15

ATtiny85

This eight-pin chip has most of the capability of the ATMega, but with far
fewer input and output pins. (It does has an 8MB RAM limit, compared to the
32MB limit of the ATMega.) Unfortunately, because of this, we can’t use the
same pin numbers in a sketch written for the Uno or ATMega328.

Numbered pin 1 is the Reset pin. Numbered pin 2 is actually either digital
pin 3 or analog input pin 3 (A3) in a sketch, and it powers the navigation/formation lights.
Numbered pin 3 is digital pin 4 or A2 in a sketch, and it is connected to the button that
switches between impulse and warp lighting. Numbered pin 5 is PWM capable pin 0 and
provides the impulse lighting signal. Numbered pin 6 is PWM capable pin 1 and is the sig-
nal for warp lighting. Finally, numbered pin 7 is either pin 2 or analog input A1. Numbered
pin 8 connects to 5V. Numbered pin 6 also connects to numbered pin 28 of the ATMega.

ATtiny85

1 Reset VCC 8

2 AI3(P3): nav lights strobes: AI1(P2) 7

3 AI2(P4): warp button warp: P1~ 6

4 GND impulse: P0~ 5

Adafruit FX Sound Board

My use of the Adafruit FX Sound Board is one of the major dif-
ferences between my lighting circuit and that of Trevor at Os-
trich Longneck. He connects the ATMega to an SD card reader,
which has an SD card loaded with sound effects. Although
we’re reading from the SD card, we’re playing the sound using
the audio output of the ATMega, which isn’t very good. Sound
effects like firing phasers and torpedoes is acceptable, but
music sounds terrible.

Instead, I opted to go with the FX Sound Board, which is
actually a stand-alone music player, capable of playing MP3
quality audio. It’s available with either 2 or 16MB of onboard
memory, and with/out an amplifier. I bought the 16MB ver-

RST

P3
AI3
P4
AI2

GND

VCC

P2
AI1

~P1

~P0

1

2

3

4

8

7

6

5

ATtiny85

S
o
u
n
d

B
o
a
r
d

R
s
t

G
n
d

Vin

BUS

Vol

P
B

T
X

R
X

U
G

+
-

C
S
G
n
d

R
L

G
n
d

1
0
A
c
t
G
n
d

0

1

2

3

4

5

6

7

8

9

Adafruit FX
16MB Sound Board

More About ... / Audio clips

 25

sion with onboard amp.

The board can be used in trigger mode, where you connect buttons to 11 trigger pins, or
in serial mode, where you connect a microprocessor to the RX and TX pins. We’re using the
latter option because we want to play sounds enabled by the sketch.

I’m not really sure which is the top or bottom of the board, so I’ll just use identify the la-
bels on the board. Vin (upper right) connects to 5V and GND connects to ground. You’ll also
want the UG pin to connect to GND, which tells the board to use UART or serial control. RX
connects to numbered pin 18 on the ATMega328. TX connects to numbered pin 19 on the
ATMega. The reset pin (upper left) connects to numbered pin 17 on the ATMega, and finally
Act (bottom left) connects to numbered pin 24 on the ATMega.

The screw terminals at the bottom connect to external speakers. You can use the R and
L pins to connect to speakers, but you’ll need an amplifier. The volume pins don’t work in
UART mode, nor do the numbered pins on the left-hand side.

At the top of the board, you’ll see a USB connector, which you can use to connect the
board to your computer. The board will show up as a flash drive, to which you can transfer
sound files. These sound files can be either in WAV format or OGG. The last may be unfamil-
iar, but it’s actually an open-source format equivalent to MP3. WAV files play immediately
when called by the sketch, but there can be a slight delay when play OGG files, because
the file needs to be decompressed before playing. Fortunately, there’s a lengthy tutorial on
how to use the sound board.

One last little detail about the sound board—all sound files must be saved in the old 8.3
format familiar to MS-DOS users in the 1980s. So, the sound file that plays when the ship
goes to warp is named ####WARP.WAV. The four hatch marks make up the four missing
characters.

Audio clips

Most of the audio clips I used for my sound effects were downloaded from trekcore.com,
which has a large number of clips including music from the movies and TV shows. Also,
special effects like phasers, torpedoes and warp drive sounds.

I don’t actually use the actual sounds from the first two movies for the phasers, torpedoes
and going to warp. The phasers came from the original Star Trek series, the photon torpe-
does from The Next Generation, going to warp from Voyager and dropping out of warp
from The Next Generation.

The ambient bridge sounds came from Enterprise-B eight-hour clip on the ender4life
channel on YouTube. The going to warp effect came from the thatSFXguy’s channel on
YouTube.

I also created a little dockyard performance using the digitized voices on my Mac and
the voices found at the IBM Watson Text to Speech demo. The latter is free and you sim-

How to Light the Enterprise

 26

ply paste in the text you want the synthesized voices to say. I also did the same with the
high-quality synthesized voices that come with the Mac OS (they have to be downloaded
separately). In order to record the spoken text, I downloaded the SoundFlower plug-in that
makes it possible to record internal audio. I arranged the audio clips in Adobe Audition, but
you could download the free program Audacity.

PWM

Pulse width modulation is a trick used to turn digital signals (either on or off, 0 or 5V) into
something like analog values. We use PWM to make LEDs gradually fade up and down in
brightness for both the deflector glow and warp nacelle glow effect.

The microprocessor achieves the effect of fading up and down by rapidly turning on and
off the 5V signal on certain pins. For instance, if you want an LED to be 50% bright, you’d
turn on and off the 5V signal for equal periods of time. Obviously, however, if you turned
on the LED for one second and off for one second, you would perceive that as blinking on
and off. If you turn the LED on for 1 millisecond and off for 1 millisecond, you just begin to
perceive this as 50% brightness instead of rapid blinking. So, to fade up, we increase the on
time and to fade down we decrease it. Or rather the microprocessor does this. We just need
to write code that progressively changes the output value of the pin.

PWM offers 256 levels of brightness, using numbers from 0 to 255. Here’s an example:
analogWrite(9, 127);

We’re telling pin 9 to send out a signal that will equate to 50% brightness.

On the ATtiny85, two pins—0 and 1 (numbered pins 5 and 6)—are capable of PWM, and
on the ATMega328, six pins have this—3, 5, 6, 9, 10 and 11 (numbered pins 5, 11, 12, 15, 16
and 17). You can still use these pins to send a purely digital signal:
digitalWrite(9, HIGH);
digitalWrite(11, LOW);

Analog input

Sort of the flip side of PWM is analog input. Certain pins can read an analog signal—volt-
age—and as the voltage varies, assign it a value between 0 and 1023. On the ATtiny85,
three pins—2, 3 and 4 (numbered pins 2, 3 and 7) are capable of reading an analog signal,
and on the ATMega328, six pins—A0, A1, A2, A3, A4 and A5 (numbered pins 23–38). The
code to read an analog input looks like this:
value = analogRead(A0);

Notice I typed A0 for the pin number. If I wanted to read a digital signal on the numbered
23rd pin on the ATMega328, I would type:
value = digitalRead(14);

And value would be set to either HIGH or LOW. But numbered pin 23 is referred to as A0
when I want to analog read that pin.

More About ... / 555 timer

 27

There’s only one instance of analogRead in our starship lighting circuit, and it’s pretty un-
usual. We use the ATtiny85 to change from impulse (amber deflector lighting) to warp (blue
deflector and warp nacelle lighting), controlled by a button connected to pin 4, numbered
pin 3 on the ATtiny. Pins 0 and 1, used in PWM mode, control the amber and blue LEDs that
signify impulse and warp.

The ATMega328 controls the sound effects of our lighting circuit, and it needs to know
when someone has pressed the impulse/warp button connected to the ATtiny in order to
play the appropriate sound effect. We do that with pin A5 (numbered pin 28) on the Mega,
using it to detect when pin 1 (numbered pin 6) above or below certain values.

Unfortunately, this is a little tricky. We’re trying to use an analog read pin on the Mega to
detect the value of a PWM pin on the Tiny. Remember, if the PWM pin is sending out a 50%
signal, half the time it’s sending out 5V and half the time 0V. So, the analog read can get
very confused what is the actual value of the Tiny pin. We get around that by tying pin 28
on the Mega to ground with an electrolytic capacitor. I used a 100µf capacitor, which has
the effect of blurring the signal enough (by constantly gradually charging and discharging)
that the value can be read.

555 timer

The venerable 555 timer (introduced in 1971) is used in millions of places
and before small microprocessors like the Arduino supplied the heartbeat of
many a starship model. It can be used in three different modes—monostable,
bistable and astable—but for our purposes we want to use it as an astable
oscillator.

Going through the pins from top left, we have:

1.	 GND, which connects to the ground of the power supply
2.	 TRG, the trigger pin. In monostable or bistable mode, the trigger can be connected

to a physical switch, but more likely to the output pin of another chip. In astable
mode, pin 2 is connected to pin 6, because we’re using the value of the threshold
pin to “pull” the trigger.

3.	 OUT, or output is the HIGH or LOW signal produced by the chip
4.	 RST, or reset, should be connected to V+ to prevent reset, so you’ll almost always see

pin 4 connected to pin 8
5.	 CTRL, or control, is rarely used. It usually goes to ground through a smoothing ca-

pacitor to prevent noise in the circuit.
6.	 THR, or threshold, when it reaches a certain voltage, pulls the trigger in astable

mode. It’s attached to a capacitor that gradually builds up the voltage that exceeds
the threshold value. The speed at which the capacitor charges is controlled by a
resistor connected to pin 7. If we’re using the 555 as a PWM LED dimmer controller,
we’re using a potentiometer instead of a resistor.

7.	 DCH, or discharge, is connected in astable mode to pin 8 with a resistor, and to pin

1

2

3

4

8

7

6

5

LM555
GND

TRG

OUT

RST

VCC

DCH

THR

CTL

How to Light the Enterprise

 28

6 with another resistor. It’s the value of the resistors and the capacitor connected to
pins 8, 7 and 6 that control the frequency of the clock signal produced by the 555
and the duty cycle of the signal—what percentage of the output is HIGH or LOW.

8.	 VCC connects to the 5V power supply. Some users place a smoothing capacitor be-
tween GND and VCC, but it’s not necessary here.

I don’t have the knowledge to explain how the 555 works, any more than I can explain
how the ATtiny or ATMega works. But I have read or watched a lot of explanations of how
the 555 works, and although I don’t completely understand it, it has helped. Even a vague,
fuzzy sort of knowledge makes it easier to understand what the pins do and how to wire
them.

Beyond using the 555 as a PWM dimmer, it can be used to produce many of the basic
starship lighting effects. Two 555s—or more efficiently a 556, which is two 555s on a sin-
gle 14-pin chip—can power collision strobes and navigation lights. Just like the ATtiny85,
however, the outputs should control transistors that switch the various LEDs to a separate
power rail. The total output of a 555 is only 200mA, which theoretically could power up to
10 LEDs, but the chip would probably run hot.

Another 555 coupled with a 4017 decade counter could also produce the spinning Bus-
sard collector lights on the original enterprise. Or a 556 could power both the lights and
drive stepper motors to recreate the spinning fan blade effects.

4017 decade counter

If you’d like to add the shuttle bay landing lights effects seen in the fifth
Star Trek movie, you have a few options as mentioned in the Lights and
Sound chapter. The easiest solution is to pair a 555 timer with the 4017
decade counter. You can see the complete circuit in the Examining the
Board(s) chapter, but there are some complexities of the 4017 we’ll exam-
ine here.

Every time the 4017 reads a HIGH signal on the clock pin, it sequentially
powers the ten output pins. The output pins are arranged haphazardly, as
you can see in the pinout. If you need less than ten outputs, you’ll want to
connect the unused pin to reset pin 15 to avoid a pause. So if you only need to light eight
pins, tie pin 9 (Q8) to pin 15

LED basics

LEDs bring our starship model to life and you will use a couple hundred
of them in your refit model. Most of the LEDs you use will be in the form
of LED tape—a string of LEDs that are typically powered by a 12V power
supply. But you’ll also use individual LEDs for the collision strobes and nav-
igation lights and the floodlights.

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

Q1

Q0

Q2

Q6

Q5

Q7

Q3

GND

VCC

MR

CLK

EN

CO

Q9

Q4

Q8

CD4017

– Cathode Anode +

More About ... / 1N4001 Diode

 29

LEDs, of course, are light-emitting diodes and diodes have a polarity. Positive voltage
must be connected to the anode (think “A-plus”) pin and ground to the cathode. The an-
ode leg is usually longer and sometimes has a 45° kink just under the bulb. The cathode is
shorter and sometimes the rim of the bulb has a flat spot on that side.

An output pin from the Arduino is supplying positive voltage, but sometimes that pin is
connected to something like a transistor, and the “signal” coming from that transistor to the
LED is the ground. This is the case for our collision strobes, navigation lights and the MOS-
FET that powers the warp nacelles. So, in this case, the signal from the transistor is attached
to the ground leg.

LEDs almost always need to be connected to a limiting resistor or else they’ll burn out.
The value of the resistor depends on the color of the LEDs and the voltage supplied to the
LED. You can use Ohm’s Law to determine what resistor value to use, but frankly I just use
online calculators to figure this out. An online calculator will ask for the voltage (always
5V in our circuit), the voltage drop of the LED (depends on the color and brightness), the
current draw (usually 20 milliamps) and the number of LEDs, which is always one. Unfor-
tunately, I’ve acquired LEDs here and there, so I’m not certain of the exact voltage drop or
current draw of an LED, so I often use a higher value resistor than the one suggested by
online calculators.

It always one because although we’re wiring LEDs in parallel, we’re still attaching a re-
sistor to each LED. Don’t be tempted like I was to wire LEDs in parallel but use a single,
low-value resistor for all the LEDs. Should one of the LEDs fail, then the remaining LEDs will
run a little hotter, and then one of those LEDs will fail, and so on until they all fail.

By the way, most people solder connectors to the ground leg of an LED, but in fact you
can solder it to either leg.

LED tape, incidentally, has built-in resistors that are perfect with a 12V supply, but still
work, if not quite as bright, with 9V. LED tape, interestingly, are three LEDs connected in se-
rial, but each three-LED group is wired in parallel. If one LED fails, all three LEDs won’t light,
but the rest of the LEDs still work. This is why you can only cut LED tape every three LEDs.

To make my life easier, I often buy white LEDs and color them as needed. This way I can
use the same resistor value for all. LED bulbs are so slick, however, they can be hard to
color. It’s best to sand the bulbs with a fine grit sanding stick or spray a matte lacquer. Then
I dip them in clear, colored acrylic or apply a permanent marker of the appropriate color,
followed by a clear acrylic topcoat.

1N4001 Diode

Diodes are very similar to LEDs, in that they’re a solid-state device that
permits electrons to only flow in one direction. We use a diode in our
on-board power supply to prevent connecting a power supply (the AC/
DC adapter) with reverse polarity. Most adapters will have a power sup-

1N4001
– CathodeAnode +

How to Light the Enterprise

 30

ply with the tip or inner barrel supplying positive voltage, but there are some exceptions.
Incidentally, LEDs can’t be used for this purpose because they usually will conduct if the re-
verse voltage is high enough. The 4001 diode we’re using can withstand a reverse voltage
of 50V and withstand 1A current draw.

1st stripe 2nd stripe
3rd stripe
(if 4 stripes total)

3rd stripe
(if 5 stripes total)

4th stripe
(if 5 stripes total)

Tolerance
(last) stripe

Black = 0 Black = 0 Black = 1 Black = 0 Black = 1
Brown = 1 Brown = 1 Brown = 10 Brown = 1 Brown = 10 Brown = 1%
Red = 2 Red = 2 Red = 100 Red = 2 Red = 100 Red = 2%
Orange = 3 Orange = 3 Orange = 1K Orange = 3 Orange = 1K Gold = 5%
Yellow = 4 Yellow = 4 Yellow = 10K Yellow = 4 Yellow = 10K Silver = 10%
Green = 5 Green = 5 Green = 100K Green = 5 Green = 100K
Blue = 6 Blue = 6 Blue = 1M Blue = 6 Blue = 1M
Violet = 7 Violet = 7 Violet (not used) Violet = 7 Violet (not used)
Gray = 8 Gray = 8 Gold = 0.1 Gray = 8 Gold = 0.1
White = 9 White = 9 White = 0.01 White = 9 White = 0.01

Resistor basics

Resistors, which reduce current flow, are common components of any circuit. In our
starship lighting circuit, they’re connected to every LED, but you’ll also find them connect-
ed to every button, every transistor, to the reset leg of the ATMega328 and to the MOSFET
for the warp nacelle glow. You will only need ¼ watt resistors for this circuit and 5% toler-
ance is acceptable, especially if you always guess a little high for your resistor values.

Resistors are rated in ohms (Ω) and reading the value of a resistor is easy if you can re-
member the rules, but I often use online calculators or the multimeter to confirm. Colored
stripes on the resistor represent its value, and most resistors have three stripes indicating
the value with a fourth the tolerance of the resistor. Some resistors have four stripes for the
value and the fifth is the tolerance. On a four-stripe resistor, the first stripe represents the
first value, the second stripe the second value and the third stripe is a multiplier. On a five-
stripe resistor, the third stripe is a value and the fourth is the multiplier. There is a small gap
between the last value and the tolerance stripe.

So, for a four-stripe resistor with brown, black, red and gold stripes, you can read that as a
1 KΩ resistor—1 and 0 times 100—with 5% tolerance, meaning the resistor could be as low
as 950Ω or as high as 1.05KΩ.

It can be quite difficult to read a resistor—red, orange and yellow look similar—so you
may need to use the multimeter to check these values. Fortunately, there are online calcu-
lators that will give you the colors for a given value or that will let you pick colors for each
stripe and return the value for that combination.

More About ... / 2N3904 transistor

 31

2N3904 transistor

The ATtiny85 and ATMega328 microprocessors can only supply a small
current to the output pins—not enough to light more than two LEDs. So,
we need a way to connect a large number of LEDs to a larger power sup-
ply, using a signal from a pin on the microprocessor to activate a switch
that makes that connection. Enter the 2N3904 transistor, a ridiculously
cheap (50¢) component that acts as that switch. A signal sent from one
of the microprocessor pins to the base leg of the transistor will connect other components
like LEDs to a higher voltage. The signal voltage doesn’t need to be more than 0.6V, but
we’re sending 5V, so there’s a 1KΩ resistor between the microprocessor and the base leg of
the transistor.

The LEDs we want to light are connected to the emitter leg of the transistor, which is ac-
tually a path to ground via the collector leg of the transmitter. So, connect the emitter leg
of the transistor to the cathode or ground leg of the LED, and the anode or positive leg of
the LED to the higher voltage. In this case, however, we use a 5V signal from the micropro-
cessor to the transistor, which switches the LEDs to the same 5V voltage that went into the
microprocessor. But importantly, we’re not sending current through the microprocessor to
those LEDs, we’re getting it directly from the AC/DC power supply adapter (wallwart).

IRF540N

A MOSFET is another solid-state device, and for our purposes, we’re using
it like a super-duper switching transistor. The pin layout of the IRF540N
MOSFET we’re using is different from the 2N3904 transistor, but the idea
is the same. We’re sending a 5V signal to the gate leg of the 540N, and the
LEDs we’re driving (in our case, the LED strips in the two nacelles) are con-
nected to the drain leg. The ground pin of the strips is connected to the
540N and the positive pin of the LED strip is connected to our 12V supply.
There’s a pull-down 10KΩ resistor bridging the gate and source legs of the 540N which
prevents accidental switching.

Capacitors

Capacitors store and release energy, sort of like a battery, al-
though they can store and discharge quite quickly. Anyone who
has inadvertently shorted a big capacitor in some sort of appli-
ance like a television knows you can end up with a melted screw-
driver and/or loss of consciousness. Fortunately, the value of the
capacitors we’re using are unlikely to cause harm.

We use both ceramic and electrolytic capacitors in our board.
Ceramic capacitors resemble little blobs of clay with two metal

Collector
(GND)

Base
(signal)

Emitter
(to LED)

2N3904

Gate
signal

Drain
(to LED)

Source
(GND)

IRF540N

Ceramic

Electrolytic

PositiveNegative

How to Light the Enterprise

 32

legs sticking out at a jaunty angle. The smaller value capacitors we use are ceramic, the
larger ones are electrolytic. Unlike the ceramic, electrolytic capacitors are polarized—they
have a positive and negative leg. Make sure the negative leg goes to ground. The negative
leg is usually indicated by a dark stripe with white bars.

The value of a capacitor is rated in farads, however, a one farad capacitor would be a
honking, big capacitor. Most of the electrolytic farads you’ll use for starship lighting are
measured in microfarads. There’s a 10µF (microfarad/1/1000th of a farad) electrolytic capac-
itor we use to bridge the reset and ground pin on the Arduino Uno to keep it from acciden-
tally resetting when using it as an in systems programmer. We use ceramic, 22 pF (picofa-
rad/1 trillionth of a farad) capacitors between the legs of the ATMega32 clock crystal and
ground. Electrolytic capacitors also have a voltage value, and for our board 16V would be
fine. Larger values are also physically larger.

Electrolytic capacitors are generally clearly labeled with its capacitance and voltage,
but ceramic capacitors requiring deciphering a code that I think is even more cryptic than
resistors. Most ceramic capacitors generally have a two- or three-digit code. The first two
digits are the capacitance in picofarads. The third digit is a multiplier and the value rep-
resents how many zeroes after the one. So a capacitor labeled with 104 is both 100,000
pF, 10 nF and 0.1uF. The 22 pF capacitors I used between the clock crystal and GND on the
ATMega328 are just labeled 22, but they could also be labeled 220.

Incidentally, the values of resistors and capacitors are quite odd because they’re spaced
logarithmically. That’s why online resistor calculators usually recommend the next highest
common value.

ULN2803A

In an effort to further reduce the load on the microprocessor, we’re
going to offload the lighting of the spotlights to the ULN2803A chip,
a Darlington array. We can connect seven of the output pins of the
ATMega328 to seven of the pins on the 2803 (the 2803 actually has
eight input/output pins, but we only need seven). The 2803A can send
up to 500 milliamps out through each pin, but we need only a little of
that.

The input pins are on the left side of the chip, the output pins on the
right. (This chip is an anomaly because the layout of the pins makes
sense.) Pin 9 (lower left) is connected to ground and pin 10 (lower
right) is connected to our 5V power rail. Unfortunately, using the 2803A still ties up seven
pins on the ATMega. Luckily, the next solution only uses up three pins while lighting eight
sets of LEDs.

1B

2B

3B

4B

5B

6B

7B

16C

15C

14C

13C

12C

11C

10C

8B 9C

GND COM

ULN2803A
1

2

3

4

5

6

7

8

 GND 9

16

15

17

18

14

13

12

11

10 VCC

More About ... / 74HC595

 33

74HC595

The 74HC595 chip is a shift register, it can convert a serial signal—of
values from 0 to 255—coming in and turn it into up to eight separate 5V
HIGH outputs. We only need three pins on the ATMega connecting to
what are commonly called the data, latch and clock pins on the 595. The
data pin receives the data that tells the 595 which of the output pins to
light up.

That data is a little complicated because of what we’re trying to do. We
want to simulate the effect of the reaction control system that are scat-
tered about the ship. To fire the thrusters, we’re going to put the values
that will light the thrusters into an array (more on that when we look at
the actual sketch) and randomly retrieve one of these value at random times.

But in one of the most bass-ackward processes you can possibly imagine, we’re going to
send a base 10 number and turn it into its equivalent 8-digit binary value. So, for instance,
if we send the base-10 number 160 to the 74HC595, it will be turned into the equivalent bi-
nary number 10100000. Those eight digits equates to the eight output legs of the 595, and
a one means send out 5V, and a zero means OV. So, two of the eight LEDs will light.

If we send the base-10 number 40 to the 595, then the equivalent binary number of
101000 will light another two RCS LEDs. You might notice that number is only six digits
long, so the 595 will just add another two zeros at the beginning to give 00101000. In fact,
all the values we’ll put in the array will only light two LEDs at a time, which is intentional.
The 595 can only drive no more three LEDs at full intensity, although it can drive more
lights at lesser intensity or for short durations. To play it safe, however, I’m limiting it to two
“random” RCS at a time.

Notice that in addition to the number 8 ground pin and the number 16 incoming volt-
age pins, we will want to ground pin 13 and connect power to pin 10. Pin 13 is the output
enable pin. If it went high (connected to power), the 595 would not light any LEDs. Pin 10 is
the reset pin and if it goes low (connected to ground), the chip resets.

Setting the pins to go high involves three lines of code:
digitalWrite(LTCH_PIN, LOW);
shiftOut (DATA_PIN, CLK_PIN, MSBFIRST, 0);
digitalWrite(LTCH_PIN, HIGH);

The first line sets the latch pin low, which makes the chip ready to accept data. The next
line sends data—in this case zero—to the data pin of the chip. The third line sets the latch
pin high, which actually sets the desired pins high.

When to use ULN2803A and 74HC595

There is a trade-off between the ULN2803A and 74HC595. The first chip can light up to
eight LEDs at a time but requires using eight pins of the microprocessor. The second chip

1

2

3

4

5

6

7

8

16

15

14 data

13 GND

12 latch

11 clock

10 VCC

9

Q2

Q3

Q4

Q5

Q1

Q6

Q7

GND

VCC

Q0

DS
data
OE

STCP
latch

SHCP
clock

MR

Q7’

74HC595

How to Light the Enterprise

 34

only uses three pins of the microprocessor but shouldn’t be used to run more than two or
three LEDs before exceeding the maximum current output of the chip. The 2803 has the
additional feature that it can power multiple LEDs per pin. The 595, on the other hand, has
the feature that you can daisy chain additional 595s without requiring the use of more pins
on the microprocessor, but each 595 still has the same current limitations.

LM7805

Our onboard power supply uses the LM7805 voltage regulator to step
down the 12V input from the AC/DC adapter to the common 5V we sup-
ply all the components on the board. Just the like the IRF540N MOSFET,
the 7805 has three legs, one attached to the 12V supply, one attached to
ground and one that supplies 5V to the rest of the board. It’s not a very
efficient regulator—the excess voltage is disposed of as heat, which is
why it’s best to attach a heat sink to the back of the 7805—but it is simple. You could get by
with just the 7805, but it’s best to attach some smoothing capacitors that bridge the legs
of the 7805. We use a 100µF electrolytic capacitor across the input and middle ground pin,
and a 10µF electrolytic capacitor across the output and ground pin. These capacitors en-
sure a stable 5V output.

JK16-050T resettable switch

This component, which resembles a ceramic capacitor, prevents the
power supply from drawing more than 500mA current. It’s sort of a
fuse, except that it can be triggered repeatedly (although that’s not
a good thing). The switch isn’t polarized and is placed just after the
1N4001 diode between the 12V supply and the input pin of the 7805.

You’ll know it’s been triggered because the board has no power,
and the switch is hot to the touch. Unfortunately, it’s not perfect protection because it’s not
triggered instantaneously, and in that period some components might be damaged.

16Mhz clock crystal

This is not really a crucial component, but it does ensure the
ATMega328 operates exactly at 16Mhz. If we had a lot of crucial
timing in our sketch, it would be essential to attach a clock crystal
to the ATMega, rather than depend on its internal crystal. If you
look at an Arduino Uno, you’ll see such a crystal. Since the crystal
doesn’t take up much space and is pretty cheap, it’s best to add
the crystal across numbered pins 9 and 10. We also should add the 22pF ceramic capacitors
mentioned earlier.

If you elect to use the ATMega328 without the crystal, you’ll need to install a different

Input GND Output

LM7805

JK16-050T

Clock crystal
16.00MHz

16.00MHz

More About ... / Buttons

 35

bootloader. Incidentally, we do depend on the internal clock of the ATtiny85, primarily be-
cause there is no option to use an external clock.

Buttons

You’d think buttons were simple, but they actually are kind of complicated.
We’re using momentary buttons to trigger the change from impulse to warp,
and to fire weapons. These buttons only fire when the button is depressed,
but we don’t want to trigger functions in the sketch repetitively while the
button is depressed. We don’t want to rapidly go from impulse to warp and
back again several times, for instance, so we need to set software flags to
prevent this.

The most common momentary buttons have four legs and are meant to straddle the hor-
izontal gap of a breadboard, although it doesn’t have to. If you look closely at the picture
above, you’ll see that a positive voltage connected to the upper left pin will be transmitted
to the pin in the lower left when the button is pressed. You should also notice a 10KΩ pull-
down resistor that goes from that pin to ground. The resistor filters out electrical noise that
might be interpreted by a microprocessor as a pressed button.

You should also know that even though there isn’t a connection from upper left to lower
right until the switch is closed, there is always a connection from the upper left pin to the
lower left, and the same holds true of the pins on the right side.

I actually bought two pin, “breadboard friendly” momentary buttons. The pins on most
momentary buttons are actually a bit too wide to easily fit in the holes of a breadboard, but
the buttons I bought fit perfectly.

Potentiometer

A potentiometer is a variable resistor that we use to control
the 555 PWM LED dimmer. We could also have connected po-
tentiometers to our microprocessors to fine tune the timing
of the collision strobes or navigation lights, or the speed at
which the deflect dish glows—except we don’t have any free
pins for that purpose.

Potentiometers, or pots, have three pins and usually the
middle pin is the wiper or the variable resistance value. The outside pins can be thought of
as the input voltage and ground, but that’s not very clear in our 555 PWM board. It doesn’t
really matter which outside pin you use for what, but it does change how the pot works,
making the LEDs brighter as you turn clockwise, or dimmer as you turn clockwise.

The pot shown on the 555 PWM board is a rotary potentiometer, but I plan to use a slide
potentiometer, reminiscent of the transporter controls on the original Star Trek show. I also
plan to a use stereo slide potentiometer to adjust the volume of the speakers. This is essen-

V+

GND

Potentiometer

wiper GNDV+

Programming the ATtiny85 and ATMega328﻿

 37

Programming the ATtiny85 and ATMega328
There’s no way to sugar coat this: Using the Arduino Uno to program other microprocessors
is pretty complicated and it’s easy to make a mistake. There are actually several ways to pro-
gram another microprocessor, but the method I’ll describe below is the least complicated.
NOTE: Although the screenshots below are of the Mac OS version, it’s layout and operation
is identical to the PC version.

Step 1: Open In System Pro-
grammer sketch
Drop down the File
menu and choose Ex-
amples. In the sub
menu that pops up, go
to 11.ArduinoISP and
open the sketch called
ArduinoISP.

If you upload this
sketch to the Arduino
Uno, it will turn the Uno
into an In System Pro-
grammer—in other
words, it turns the Uno
into a device that can
program microproces-
sors like the ATtiny85 and
ATMega328. By the way, just like any sketch you upload to the Uno, this sketch will remain
in the Uno even after you unplug it from power. There’s no need to re-upload this sketch
each time you use the Uno as a programmer unless you’ve uploaded a different sketch in

How to Light the Enterprise

 38

the interim.

Step 2: Target the microprocessor
If you want to program the
ATtiny85, you’ll first need to
give the Arduino IDE some
information. Go to Prefer-
ences in the File menu and
look for the line Additional
Boards Manager URLs:

Paste in the URL you see
below the picture to the right
(you can just copy that text)
into the blank field and click
OK.

You’ve identified the
location of the file that
describes the ATtiny
family of processors, but
now you need to tell the
Arduino IDE to install it.

Next, choose Boards
Manager… in the Tools
menu. You’ll find it in a
drop-down menu next
to the currently targeted
processor, which will
probably be Board:
“Arduino Uno”

It can be difficult to find
what you’re looking for, so
type “attiny” in the search
field and you’ll see the man-
ager for the ATtiny family.
Select the newest version
of the manager (the picture
shows v 1.0.2) and click Install.

https://raw.githubusercontent.com/damellis/attiny/ide-1.6.x-boards-manager/pack-
age_damellis_attiny_index.json

Programming the ATtiny85 and ATMega328﻿

 39

OK, step 2 isn’t done yet. From
the Tools menu again, drop down
the menu that probably says
Board: “Arduino Uno” and then
drop down the sub menu that says
ATtiny Microcontrollers. From
that submenu, choose
ATtiny25/45/85.

Nope, still not done. A new menu
item has appeared in the Tools menu, just
under the menu item that now says Board:
“ATtiny25/45/85”

The new menu item is called Processor:
“ATtiny25” Click it to drop down a sub
menu where you’ll choose ATtiny85.

Nope, still not done. You must now make
your choice for the clock speed of the
ATtiny85. I think you could leave this at the
default 1MHz, but I think you’re better
off picking a clock speed closer to the
clock speed of the Uno you’ve used for
development. However, you should
avoid the Internal 16MHz option (or any
of the external options) unless you really
know what you’re doing. Which leaves
you to choose Internal 8 MHz.

And now you’re done … with this step.
The good news is that if you’re program-
ming the ATMega328, you don’t need or want to change the board from the Arduino Uno. The
ATMega328, is after all, the same processor as on the Uno, although there might be some
extra steps required if you skip the external clock for the ATMega.

How to Light the Enterprise

 40

Step 3: Tell the Uno to be an In System Programmer
But wait, I hear you wail. We already did that
in step 1! Yes, you uploaded the In System
Programmer sketch to the Arduino, but now
you have to tell it you really mean it. Which
you will do by returning to the Tools menu
and dropping down the menu item that
probably says Programmer: “AVRISP mkII”
From the sub menu, choose Arduino as
ISP.

Don’t get seduced by any of the other op-
tions. Pick Arduino as ISP. The good news
is that you won’t need to change this selection, even if you go back to normally program-
ming your Uno.

Step 4: Burn the bootloader
This step might not actually be necessary. Often when you buy a microprocessor like the
ATtiny or ATMega, a bootloader has already been burned onto the chip. Without the boot-
loader, it’s just a dumb brick and doesn’t know what to do with any sketches you might
want to upload it.

You’ll only need to burn the bootloader once,
although it’s possible you might do something
that corrupts the bootloader, and you may have to
upload it again. You’ll find Burn Bootloader at the
bottom of the Tools menu.

Programming the ATtiny85 and ATMega328﻿

 41

A
B
C
D
E

F
G
H
I
J

1 10 15 20 25 305
A
B
C
D
E

F
G
H
I
J

1 10 15 20 25 305

AR
EF GN
D 13 12 ~1
1

~1
0 ~9 8

IO
 R
EF

RE
SE
T

3V
3

5V GN
D

GN
D

VI
N

A0 A1 A2 A3 A4 A5

14 15 16 17 18 19

7 ~6 ~5 4 ~3 2

TX
O>
1

RX
O<
0

DIGITAL(PWM~)

L

POWER ANALOG IN

TX
RX

UNO

SPK16.00

AR
EF GN
D 13 12 ~1
1

~1
0 ~9 8

IO
 R
EF

RE
SE
T

3V
3

5V GN
D

GN
D

VI
N

A0 A1 A2 A3 A4 A5

14 15 16 17 18 19

7 ~6 ~5 4 ~3 2

TX
O>
1

RX
O<
0

DIGITAL(PWM~)

L

POWER ANALOG IN

TX
RX

UNO

SPK16.00

RS
T

3
A

3

4
A

2

G
N

D

VC
C

A
1

2 ~1 ~0

ATtiny85
P
0
R
X

P
1
T
X

P
2

P
3
~

R
S
T

P
4

V
C
C

G
N
D

C
R
S

C
R
S

P
5
~

P
6
~

P
7

P
8

A
I
5

A
I
4

A
I
3

A
I
2

A
I
1

A
I
0

G
N
D

A
R

V
C
C

P
1
3

P
1
2

~
P
1
1

~
P
1
0

~
P
9

ATMega328

Step 5: Connect the Uno to the microprocessor
Yes, I put the cart before the horse. You can’t burn the bootloader or upload a sketch to the
microprocessor until you’ve connected it to the Uno. I have a half-size breadboard that I use
for programming a chip, so I don’t have to tear up whatever is on the main board whenever
I need to upload a sketch. Note that in the example above, the ATtiny is facing left and the
ATMega is facing right. It was just easier to draw this way.

The process of uploading to either the ATtiny or ATMega is similar. I’ve added some status
lights to the breadboard that indicates the progress of an upload. These LEDs are connect-
ed to pins 9, 8 and 7 on the Uno. The yellow LED connected to pin 9 is the heartbeat, which
pulses whenever the Uno makes a valid connection to a microprocessor. The red LED indi-
cates a problem, and the green LED shows an upload in process.

There are 150KΩ capacitors connecting the yellow and green status LEDs to ground and
a 180KΩ resistor connected to the red LED, but you could just use the 180KΩ value for all
three.

Pins 13, 12, 11 and 10 of the Uno are connected to either numbered pins 7, 6, 5 and 1 on
the ATtiny85, or numbered pins 19, 18, 17 and 1 on the ATMega328. Notice pin number 1
(reset) on the ATMega is connected to ground with a 10KΩ resistor—that’s probably not
necessary for the ATtiny.

The ATMega’s connections are more complicated, and you’ll see the 16MHz clock crys-
tal across numbered pins 9 and 10 and the two, 22pF ceramic capacitors connecting to

How to Light the Enterprise

 42

ground. Also notice the 10µF electrolytic capacitor bridging reset and GND on the Uno. This
prevents accidental resets, which I’m told this has been fixed on newer Unos, but apparent-
ly not on mine.

Power to the microprocessor comes from the 5V and GND pins on the Uno.

Step 6: Upload final sketch to microprocessor
After you’ve burned the bootloader to the micro-
processor, you’re now ready to upload your sketch
to the microprocessor, but there’s one final GOT-
CHA! If you were to simply click on the arrow to
upload your sketch, you’d actually be uploading
it to the Uno and replacing the ArduinoISP sketch
you originally uploaded all the way back in step
1. Instead, you need to hold down the SHIFT key
before clicking the arrow. You’ll see the label Up-
load change to Upload Using Programmer. (In the Sketch menu of the IDE, you’ll also see
options for Upload and Uploading Using Programmer.)

And that’s all there is to it! Every time you make a change to your sketch, of course, you’ll
need to lather, rinse and repeat. Fortunately, the IDE will remain in whatever state you last
used it, unless you change processors or forget to hold down the SHIFT key when upload-
ing a sketch to a processor.

If you forget one of these steps, you’ll see error messages saying you’ve done something
wrong. Common mistakes I make include forgetting to upload the ArduinoISP sketch to
the Uno before trying to upload to the microprocessor, forgetting to hold down SHIFT
when I want to upload to the microprocessor, forgetting to add the capacitor across reset
and GND, forgetting that the ATtiny85 is still selected when I’m trying to upload to the
ATMega328 (and vice versa) and accidentally dislodging some jumper wire on the bread-
board.

Fortunately, practice does make this process easier and I rarely make these mistakes …
unless it’s been a couple of months since the last time I needed to do this.

Examining the sketches that drive the starship / strobes–navs–deflector–ATtiny.ino

 43

Examining the sketches that drive the starship

strobes–navs–deflector–ATtiny.ino

There are two sketches that power our starship and two microprocessors that run those
sketches. They largely operate independently of each other, although the sketch on the
ATtiny85 is timed to coincide with the startup sequence of the sketch on the ATMega328,
and the ATMega sketch reads the status of a pin on the ATtiny to know whether the ship is
at impulse or warp.

LedFlasher and arduino-timer
Before we begin examining the ATtiny sketch, let’s look at two libraries downloaded to
make blinking lights easier to create. The Arduino IDE or integrated development envi-
ronment comes with many libraries pre-installed and you may be unaware of where these
libraries are located. You can access these libraries by writing an #include directive at
the top of your sketch. But you can add your own libraries by downloading them into the
Arduino folder created when the IDE was installed. In the Arduino folder, you’ll need to cre-
ate another folder called libraries and within that, place the folders and files extracted from
the download.

The first library, LedFlasher, created by Nick Gammon, is simple but useful. It just blinks
lights and is used to flash the collision strobes and the navigation/formation lights. After
the #include directive, two instances of the class are created and named. The arguments
in the parentheses declare which pins to use as outputs; how long, in milliseconds, the
amount of time an LED is off; and how long it’s on. Note: You don’t have to declare these pins
as outputs with a pinMode() declaration.
#include <LedFlasher.h>
#include <arduino-timer.h>
LedFlasher strobeLights (2, 900, 100);
LedFlasher navLights (3, 500, 1000);

How to Light the Enterprise

 44

In the setup block, I make a call to the begin() method of the class for each instance,
and finally in the main loop block, I have a call to the update() method for each instance.
And that’s it! Easy peasy.

The second library, arduino-timer, created by Michael Contreras, is a little more compli-
cated. Both libraries make it possible to do repetitive actions without resorting to delay
statements to manage the time between these actions. The classic blink.ino sample you
should be familiar with uses a delay between the on and off state and another delay after
the off state. All of this is written in the main loop, which repetitively performs these ac-
tions.

Unfortunately, delay statements block any other things happening in the sketch during
the delay, which become increasingly obvious as you write more complicated sketches. The
LedFlasher library blinks LEDs without blocking the rest of the sketch by reading the value
of the microprocessor’s clock. It looks to see how much time has elapsed since the previous
time an LED was turned on using the millis() function. It’s a standard C++ function—the
Arduino IDE is basically C++ with some Arduino specific functions added in. So, if a set
number of milliseconds have passed, the LED turns off, and then the LedFlasher instance
waits for a set number of milliseconds before it turns the LED back on. NOTE: I don’t really
know how arduino-timer works; I think it digs into the core Arduino libraries to do its magic.

The Arduino-timer, however, can be used to time anything in your code. And the timer
can run once, run repetitively or run at a certain time. You can create multiple timers and
multiple tasks to each timer. In this sketch, I’m using the timer to fade up and down the
deflector glow and the warp nacelle glow.

Like the LedFlasher, first an instance of a timer is created and then assigned tasks. There
are two ways to create an instance, and this sketch uses the simpler, more familiar method:
auto sysTmr = timer_create_default();

A task is assigned in the setup block that will fade up the deflector glow:
sysTmr.every(fadeIncr, fader, “fade up”);

This task will repetitively call the fader function using the time value stored in the vari-
able fadeIncr. It will send the argument or parameter “fade up” to the function after the
specified time. Also, notice this happens immediately after a delay that is meant to sync
it to the spacedock startup sequence in the first two Star Trek movies. In this case, code is
being intentionally blocked to prevent anything from happening.

warpBtnFlag
Subsequent fade downs and fade ups are triggered when a momentary button is pressed.
In the main loop, you can the if statement that detects the button press:
if (digitalRead(WARP_BTN_PIN) == HIGH && !warpBtnFlag) {
 sysTmr.every(fadeIncr, fader, “fade down”);
 warpBtnFlag = 1;
}

There is a flag—warpBtnFlag—that makes sure the task isn’t reassigned until a complete

Examining the sketches that drive the starship / ATtiny85 sketch

 45

fade down/up cycle is completed.

We’ll examine the fader function at the end of the sketch.

ATtiny85 sketch
/*
Flashing collision strobes and navigation lights;
changing deflector glow from amber to blue;
ramping nacelle glow from dark to blue;
on Enterprise refit model using ATtiny85
Inspired by Ostrich Longneck
LedFlasher library by Nick Gammon
Arduino-timer by Michael Contreras
Jennifer Petkus
March 24, 2021
*/
#include <LedFlasher.h> // NOTE: there’s no semi-colon at the end of the include directive
#include <arduino-timer.h>

LedFlasher strobeLights (2, 900, 100); // NOTE! Pin numbers relate to input or output
numbers, not physical layout of ATtiny
LedFlasher navLights (3, 500, 1000);

const int IMP_PIN = 0;
const int WARP_PIN = 1;
const int WARP_BTN_PIN = 4; // connects to button that switches from impulse to warp
bool warpFlag = 0; // 0: at impulse; 1: at warp
bool warpBtnFlag = 0; // 0: deflector not changing; 1: deflector changing
int fadeVal = 0;

// first number is how long fade takes, then divided by PWM values
unsigned long fadeIncr = 2000 / 255;
// don’t make first number too long or steps will be obvious

// adjust this to match drydock spotlight startup sequence
unsigned long startupDelay = 79299 + 4000;
// startup sequence starts over when ATtiny85 and ATMega328 are reset

auto sysTmr = timer_create_default();

void setup() {
 strobeLights.begin();
 navLights.begin();
 pinMode(IMP_PIN, OUTPUT);
 pinMode(WARP_PIN, OUTPUT);
 pinMode(WARP_BTN_PIN, INPUT);
 analogWrite(IMP_PIN, 0);
 analogWrite(WARP_PIN, 0);
 warpFlag = 1; // we want be at impulse on startup so warpFlag is set
 delay(startupDelay);
 sysTmr.every(fadeIncr, fader, “fade up”); // initial fade up to amber
}

void loop() {
 sysTmr.tick();
 strobeLights.update();
 navLights.update();
 // warpBtnFlag prevents overlapping imp/warp state change
 if (digitalRead(WARP_BTN_PIN) == HIGH && !warpBtnFlag) {

How to Light the Enterprise

 46

 sysTmr.every(fadeIncr, fader, “fade down”);
 warpBtnFlag = 1;
 }
}

bool fader(const char *which) {
 int down_pin, up_pin;
 if (warpFlag) { // if at warp fade nacelle down and impulse up
 down_pin = WARP_PIN;
 up_pin = IMP_PIN;
 } else { // if at impulse fade impulse down and nacelle up
 down_pin = IMP_PIN;
 up_pin = WARP_PIN;
 }
 //fade down then up
 if (which == “fade down”) { // fade down
 fadeVal--;
 if (fadeVal <= 0) {
 sysTmr.cancel();
 analogWrite(down_pin, 0);
 sysTmr.every(fadeIncr, fader, “fade up”);
 } else {
 analogWrite(down_pin, fadeVal);
 }
 return true;
 } else if (which == “fade up”) { // fade up
 fadeVal++;
 if (fadeVal >= 255) {
 sysTmr.cancel();
 warpBtnFlag = 0;
 warpFlag = !warpFlag;
 return false;
 } else {
 analogWrite(up_pin, fadeVal);
 return true;
 }
 }
}

fader() function

Functions are used when you need to do the same thing multiple times in a sketch. If you
ever find yourself writing the same code more than once, it’s best to write a function. Func-
tions also reduce the length of a loop block, making it less cluttered. Functions are usually
specific to the sketch you’re writing. Classes are ways of making functions easily accessible
to more than one sketch. And libraries are convenient ways of making these classes ac-
cessible to a larger number of people. As already noted, we’re using two libraries here and
these libraries are made up of classes. We declared instances of these classes and then use
the functions or methods defined in these classes.

In this sketch, it would be possible, especially in this simple sketch, to include everything
in the fader function directly into the main loop block … if we weren’t using arduino-timer
tasks. These tasks have to call a function when the task completes.

Let’s look at how the function works. The function describes a cycle. Everytime the warp
button is pressed, it assigns a task that will send the “fade down” argument or parameter

Examining the sketches that drive the starship / fader() function

 47

to the function. When the function is called, it looks to see what parameter has been sent
…
if (strcmp(which, “fade down”) == 0) {

… and acts accordingly. The appropriate pin of the ATtiny is slowly faded until it reaches
zero …
if (fadeVal <= 0) {

… at which point the the current task is canceled and a new task assigned that sends the
parameter “fade up” to the fader() function.
sysTmr.cancel();
analogWrite(down_pin, 0);
sysTmr.every(fadeIncr, fader, “fade up”);

You might notice in the line that defines the fader function …
bool fader(const char *which) {

… that any parameter sent to the fader() function is assigned to the local variable (only
valid within the function) which, and that we use a string compare function (a core C++
function) to see whether which contains “fade up” or “fade down.”

warpFlag
Also notice that the very beginning of the fader() function decides which pins are be-
ing faded up or down based on warpFlag. Be aware that warpFlag is different from
warpBtnFlag, although they are both Boolean variables. warpBtnFlag is used to prevent
overlapping button presses. warpFlag, however, keeps track of whether the ship is at im-
pulse speed or warp. The variable was set to false when it was declared at the top of the
sketch—you’re not traveling at warp in space dock. When a fade down/up cycle is complet-
ed, we change the value of warpFlag to the opposite of warpFlag:
warpBtnFlag = 0;
warpFlag = !warpFlag;

And we also set warpBtnFlag = 0, which means button presses are again recognized.

Finally, I should point out the various return true; and return false; statements
sprinkled throughout the function. arduino-timer tasks expect that the function it calls
returns either true or false to confirm whether the task should repeat or stop. So after this
statement:
sysTmr.every(fadeIncr, fader, “fade up”);

The task expects a true value to be returned. If we cancel a task and don’t reassign it, for
instance after the fade down has completed, we return false. The Boolean return values
are also the reason for the bool keyboard before the declaration of the fader function. The
other functions in the sketch—setup and loop—don’t return any values and thus the void
keyword in their declarations.

How to Light the Enterprise

 48

More things to note

Let’s look at a couple of things I should elaborate on:

Timer variables
You might notice these variable declarations:
unsigned long fadeIncr = 2000 / 255;
unsigned long startupDelay = 1000;

You’re probably more familiar with the int or float keywords when declaring a variable.
ints are variables that can hold any whole number between -32,768 to 32,767, but unfor-
tunately that’s not a very long period of time counted in milliseconds, which is the default
value arduino-timer uses to measure intervals. (The alternate method of creating a timer
instance allows microsecond time values.) An unsigned long variable, on the other hand,
is a whole number between 0 and 4,294,967,295, which works out to a long time in milli-
seconds, and you’re unlikely to see that number reached in any sketch you write. It’s proba-
bly overkill, but in general it’s best to write any values used in timer functions as unsigned
long variables.

Tick, tick, tick
Also notice the line …
sysTmr.tick();

… at the start of the loop block. This line just tells any arduino-timer tasks to see if it’s
time to do something and is equivalent to the update() call used by LedFlasher.

Function parameters
Another peculiarity that might surprise some is the way the parameter in the fader function
is determined. Coming from less strictly typed programming languages such as JavaScript,
php and ActionScript 3.0, someone would be tempted to write:
if (which == “fade down”) {

But this construction is problematic, so I’ve been told. In fact, strings in general are prob-
lematic in C++. Whether a strcmp is necessary or not, I’m uncertain, but it certainly works,
so I’ll stick with it.

startupDelay
Notice the line:
unsigned long startupDelay = 79299 + 4000;

… way back at the top of the sketch. As I mentioned, there’s no communication between
the sketch running on the ATMega328 and the sketch on the ATtiny85. The ATMega sketch
has a long spacedock startup sequence that takes about two minutes to complete. About
80 seconds into that sequence, the main deflector is supposed to fade up to amber, just
about when the last spotlight shines on the engineering hull registry. But the ATMega
sketch doesn’t control the deflector dish, the ATtiny sketch does. That’s why there’s a delay

Examining the sketches that drive the starship / Finally

 49

here to make the fade up of the deflector match the activation of the spotlight.

Unfortunately, the ATtiny starts up a lot faster than the ATMega and that’s why there’s an
additional four seconds added here to adjust for that. You’ll have to tweak this value if your
ATMega has a different startup delay.

Oh, the secondary purpose this delay provides is that it prevents going to warp while in
spacedock, but the spacedock musical sequence actually lasts 1:48 seconds. After 83.299
seconds, you could go to warp—while in spacedock. To fix this, instead of a delay, you
could use a timer task to stage the activation of the collision strobes, navigation light and
deflector, and another task timed to remove a flag that prevents the warp button from
working until the spacedock startup sequence completes. The process would be similar to
the startUp function in the next sketch.

Finally

In conclusion, you can see that this sketch is pretty simple and it does work without a
hitch. You might be wondering, however, whether it was necessary to use two libraries. The
functionality of the LedFlasher library could have been accomplished with additional tasks
assigned to sysTmr, but I really love the simplicity of LedFlasher.

After all, the library accomplishes the bare minimum lighting of most starships—collision
strobes and navigation lights. It would be perfectly adequate for lighting the Defiant from
Deep Space Nine, for instance, or even the Enterprise refit if you didn’t care about weapons
fire and didn’t need to switch from impulse to warp.

If you decide to dispense with LedFlasher, you’ll need to create a function similar to fader
that blinks these lights, so while in some ways it might seem simpler to just use the ardui-
no-timer library, it actually becomes a little more complicated.

How to Light the Enterprise

 50

spotlights_rcs_weapons_sound_ATMega.ino

This sketch is more complicated than the ATtiny sketch and it introduces a third library,
used to control the Adafruit FX Sound Board, and a fourth library, SoftwareSerial. First, let’s
talk about the sound board. The Adafruit_Soundboard.h library was downloaded, extract-
ed and placed in the libraries folder inside the Arduino folder that on my Mac was installed
in Documents.

<	Adafruit_Soundboard
We communicate with the sound board using serial read and write, normally accomplished
with pins 1 and 0, which incidentally are the same pins used to communicate with the
Arduino Uno. You’ll see the LEDs for the RX and TX flash rapidly when uploading a script.
The Adafruit example scripts, however, use SoftwareSerial to communicate with the board.
SoftwareSerial is one of the “built-in” libraries that was installed with the Arduino IDE and it
allows you to use any of the pins (there may be restrictions, but I don’t know what they are)
for serial communication. These two lines …
SoftwareSerial ss = SoftwareSerial(SFX_TX, SFX_RX);
Adafruit_Soundboard sfx = Adafruit_Soundboard(&ss, NULL, SFX_RST);

… create an instance of the SoftwareSerial class, using the variables we previously de-
fined …
#define SFX_TX 13
#define SFX_RX 12
#define SFX_RST 11

Note: I don’t know why these are created with #define directives instead of just int. Nor do I
know why the #include “Adafruit_Soundboard.h” uses quotes instead of < and >. These
are just mysteries of too little consequence for me to investigate. I’m content to follow the lead
of the Adafruit example sketches.

If you want to use pins 0 and 1, which I use to fire phasers, then you’d remove the line
where the SoftwareSerial instance is created and you’d change the next line to:
Adafruit_Soundboard sfx = Adafruit_Soundboard(&Serial1, NULL, SFX_RST);

This tells the instance of the Adafruit_Soundboard class to use the regular hardware serial
pins. Of course, you’d then have to change the other pin assignments and the perboard lay-
out in this book would no longer be valid. But you could if you really wanted … just saying.
Well, I hope I’ve convinced you to stick with SoftwareSerial. There must be some reason it’s
the default choice.

Later on in the script, we’ll be using the play() and stop() methods of our sound board
instance—sfx—to play and stop sounds. We’ll also read the value of the SND_DET pin to
know whether a sound a playing. You don’t want to stop a sound if that wasn’t playing—it
really causes problems.

<	Tasks
A difference you’ll notice here compared to the previous sketch is that we’re using a differ-

Examining the sketches that drive the starship / ATMega sketch

 51

ent way to create an instance of the arduino-timer class and explicity creating tasks:
Timer<4> sysTmr;
Timer<>::Task rcsTsk;
Timer<>::Task phasTsk;
Timer<>::Task torpTsk;
Timer<>::Task spotTsk;

The instance is still called sysTmr, but this statement—Timer<4>— specifies a maximum
of four tasks. The tasks are created with this constructor: Timer<>::Task

The tasks are also handled here quite differently than the previous sketch. The spotTsk is
fist assigned at the end of the setup block …
 startDelay = millis();
 spotTsk = sysTmr.at(SPOT_1_TIME + startDelay, startUp, “spot1”);

… and is then sequentially reassigned throughout the startup sequence, lighting up
spotlights 2–7 and in its last act, assigning rcsTsk. Note the line above that sets the start-
Delay variable to the current millisecond since the start of the sketch. This is necessary be-
cause there’s a delay before the ###INTROWAV file starts playing. The startDelay is added
to keep the spotlights in time with the music.

ATMega sketch
#include <arduino-timer.h>
#include <LedFlasher.h>
#include <SoftwareSerial.h>
#include “Adafruit_Soundboard.h”

// detect if ATtiny has gone to warp
const int WARP_DET = 19;

// pins to 74HC595
const int DATA_PIN = 18;
const int LTCH_PIN = 17;
const int CLK_PIN = 16;

// detect if sound still playing
const int SND_DET = 15;

// detect weapons fire
const int WEAP_BTN = 14;

// pins to soundboard
#define SFX_TX 13 // connects to TX on soundboard
#define SFX_RX 12 // connects to RX on soundboard
#define SFX_RST 11 // connects to RST on soundboard

// torpedoes
const int TORP1_PIN = 10;
const int TORP2_PIN = 9;

// spotlights
const int SPOT_1 = 8;
const int SPOT_2 = 7;
const int SPOT_3 = 6;
const int SPOT_4 = 5;

How to Light the Enterprise

 52

const int SPOT_5 = 4;
const int SPOT_6 = 3;
const int SPOT_7 = 2;

// phasers
const int PHAS_PIN1 = 1;
const int PHAS_PIN2 = 0;

SoftwareSerial ss = SoftwareSerial(SFX_TX, SFX_RX);
Adafruit_Soundboard sfx = Adafruit_Soundboard(&ss, NULL, SFX_RST);

/* Next value is a very loose approximation of the time
for a torpedo launch burst. Torpedo brightness increases
until it reaches threshold value, goes to 255, and then fades */
const unsigned long TORP_DUR = 2000/255;
const int TORP_THRESH = 64; // when torp launcher switches to full bright
int torpInt = 0; // current brightness of torp launcher
int torpCnt = 0; // port or starboard launcher
int fireCnt = 0; // how many times weapons fired
int fireLmt = 0; // max number weapons fire
const int FIRE_LOW = 2;
const int FIRE_HIGH = 7;
bool weapFlag = 0; // prevents overlapping fire
bool warpFlag = 0; // prevents RCS firing at warp
bool phas1Flag = 0;
bool phas2Flag = 0;
const int PHAS_LOW = 500;
const int PHAS_HIGH = 1500;
unsigned long startDelay = 0;

bool startupFlag = 1; // prevents weapons fire while in spacedock
const unsigned long SPOT_1_TIME = 69072;
const unsigned long SPOT_2_TIME = 70825;
const unsigned long SPOT_3_TIME = 72306;
const unsigned long SPOT_4_TIME = 74131;
const unsigned long SPOT_5_TIME = 75794;
const unsigned long SPOT_6_TIME = 77636;
const unsigned long SPOT_7_TIME = 79299;
const unsigned long RCS_TIME = 109500;

const int rcsPatterns [10] = {160, 80, 40, 20, 10, 5, 18, 17, 129, 66};
// following two values are used to random generate pauses between RCS bursts
const int RCS_LOW = 5000;
const int RCS_HIGH = 10000;

LedFlasher PHAS_1(PHAS_PIN1, 50, 100); // phaser flicker effect
LedFlasher PHAS_2(PHAS_PIN2, 50, 100); // phaser flicker effect

Timer<4> sysTmr;
Timer<>::Task rcsTsk;
Timer<>::Task phasTsk;
Timer<>::Task torpTsk;
Timer<>::Task spotTsk;
	
void setup() {
 pinMode(SPOT_1, OUTPUT);
 pinMode(SPOT_2, OUTPUT);
 pinMode(SPOT_3, OUTPUT);
 pinMode(SPOT_4, OUTPUT);
 pinMode(SPOT_5, OUTPUT);
 pinMode(SPOT_6, OUTPUT);

Examining the sketches that drive the starship / ATMega sketch

 53

 pinMode(SPOT_7, OUTPUT);

 digitalWrite(SPOT_1, LOW);
 digitalWrite(SPOT_2, LOW);
 digitalWrite(SPOT_3, LOW);
 digitalWrite(SPOT_4, LOW);
 digitalWrite(SPOT_5, LOW);
 digitalWrite(SPOT_6, LOW);
 digitalWrite(SPOT_7, LOW);

 pinMode(WARP_DET, INPUT);
 pinMode(TORP1_PIN, OUTPUT);
 pinMode(TORP2_PIN, OUTPUT);
 pinMode(WEAP_BTN, INPUT);
 pinMode(SND_DET, INPUT);
 pinMode(LTCH_PIN, OUTPUT);
 pinMode(DATA_PIN, OUTPUT);
 pinMode(CLK_PIN, OUTPUT);

 PHAS_1.begin();
 PHAS_2.begin();

 ss.begin(9600);
 sfx.reset(); // essential, if not here, sound will not start
 sfx.playTrack(“###INTROOGG\n”);
 while (digitalRead(SND_DET) == HIGH) {
 }
 // it takes some time before the sound begins playing and we capture that time below
 startDelay = millis();
 // and add that time to all our spotTsk assignments
 spotTsk = sysTmr.at(SPOT_1_TIME + startDelay, startUp, “spot1”);
 digitalWrite(LTCH_PIN, LOW);
 shiftOut (DATA_PIN, CLK_PIN, MSBFIRST, 0);
 digitalWrite(LTCH_PIN, HIGH);
}

void loop() {
 sysTmr.tick();
 if (digitalRead(WEAP_BTN) == HIGH && !weapFlag && !startupFlag) { // prevents
overlapping fire and firing in spacedock
 fireLmt = random(FIRE_LOW,FIRE_HIGH); // max number weapons fire
 weapFlag = 1;
 randomFire();
 }
 if (analogRead(WARP_DET) > 800 && warpFlag == 0) { // prevents RCS from firing at warp
 warpFlag = 1;
 warpMode(“warp”);
 } else if (analogRead(WARP_DET) < 600 && warpFlag == 1) {
 warpFlag = 0;
 warpMode(“impulse”);
 }
 if (phas1Flag) {
 PHAS_1.update();
 }
 if (phas2Flag) {
 PHAS_2.update();
 }
}

void warpMode(const char *which) {
 if (strcmp(which, “warp”) == 0) {

How to Light the Enterprise

 54

 if (digitalRead(SND_DET) == LOW) {
 sfx.stop();
 }
 sfx.playTrack(“####WARPWAV\n”);
 } else if (strcmp(which, “impulse”) == 0) {
 if (digitalRead(SND_DET) == LOW) {
 sfx.stop();
 }
 sfx.playTrack(“#IMPULSEWAV\n”);
 rcsTsk = sysTmr.in(random(RCS_LOW, RCS_HIGH), fireRCS, “trigger”);
 }
 delay(4000);
 if (digitalRead(SND_DET) == LOW) {
 sfx.stop();
 }
 sfx.playTrack(“#AMBIENTOGG\n”);
}

bool startUp(const char *which) {
 if (strcmp(which, “spot1”) == 0) {
 spotTsk = sysTmr.at(SPOT_2_TIME + startDelay, startUp, “spot2”);
 digitalWrite(SPOT_1, HIGH);
 }
 if (strcmp(which, “spot2”) == 0) {
 spotTsk = sysTmr.at(SPOT_3_TIME + startDelay, startUp, “spot3”);
 digitalWrite(SPOT_2, HIGH);
 }
 if (strcmp(which, “spot3”) == 0) {
 spotTsk = sysTmr.at(SPOT_4_TIME + startDelay, startUp, “spot4”);
 digitalWrite(SPOT_3, HIGH);
 }
 if (strcmp(which, “spot4”) == 0) {
 spotTsk = sysTmr.at(SPOT_5_TIME + startDelay, startUp, “spot5”);
 digitalWrite(SPOT_4, HIGH);
 }
 if (strcmp(which, “spot5”) == 0) {
 spotTsk = sysTmr.at(SPOT_6_TIME + startDelay, startUp, “spot6”);
 digitalWrite(SPOT_5, HIGH);
 }
 if (strcmp(which, “spot6”) == 0) {
 spotTsk = sysTmr.at(SPOT_7_TIME + startDelay, startUp, “spot7”);
 digitalWrite(SPOT_6, HIGH);
 }
 if (strcmp(which, “spot7”) == 0) {
 digitalWrite(SPOT_7, HIGH);
 spotTsk = sysTmr.at(RCS_TIME + startDelay, startUp, “rcs”);
 }
 if (strcmp(which, “rcs”) == 0) {
 startupFlag = 0;
 while (digitalRead(SND_DET) == LOW) {
 }
 sfx.playTrack(“#AMBIENTOGG\n”);
 rcsTsk = sysTmr.in(random(RCS_LOW, RCS_HIGH), fireRCS, “trigger”);
 }
 return false;
}

void randomFire() {
 if (digitalRead(SND_DET) == LOW) {
 sfx.stop();
 }

Examining the sketches that drive the starship / ATMega sketch

 55

 if (fireCnt < fireLmt) {
 if (random(0,2) == 1) {
 phasTsk = sysTmr.in(100, firePhaser, “fire”);
 } else {
 torpTsk = sysTmr.in(100, fireTorpedo, “ramp”);
 }
 fireCnt++;
 } else {
 fireCnt = 0;
 weapFlag = 0;
 sfx.playTrack(“#AMBIENTOGG\n”);
 }
}

bool fireTorpedo(const char *which) {
 if (strcmp(which, “ramp”) == 0) { // slowly lights LED until …
 if (torpInt > TORP_THRESH) { // … flash after threshold
 if (torpCnt == 0) {
 sfx.playTrack(“#TORPEDOWAV\n”);
 }
 torpInt = 255;
 torpTsk = sysTmr.in(TORP_DUR/2, fireTorpedo, “fade”);
 } else {
 torpTsk = sysTmr.in(TORP_DUR, fireTorpedo, “ramp”);
 torpInt++;
 }
 } else {
 if (torpInt <= 0) {
 if (torpCnt == 0) {
 torpTsk = sysTmr.in(TORP_DUR, fireTorpedo, “ramp”);
 torpCnt = 1;
 torpInt = 0;
 } else {
 torpCnt = 0;
 torpInt = 0;
 randomFire();
 }
 } else {
 torpTsk = sysTmr.in(TORP_DUR/2, fireTorpedo, “fade”);
 torpInt--;
 }
 }
 int cur_pin = 0;
 if (torpCnt == 0) { // switches between port / stbd launcher
 cur_pin = TORP1_PIN;
 } else {
 cur_pin = TORP2_PIN;
 }
 analogWrite(cur_pin, torpInt);
 return false;
}

bool firePhaser(const char *which) {
 if (random(0, 2) == 0) {
 phas1Flag = 1;
 } else {
 phas2Flag = 1;
 }
 if (strcmp(which, “fire”) == 0) {
 sfx.playTrack(“##PHASERWAV\n”);
 phasTsk = sysTmr.in(random(250,750), firePhaser, “stop”);

How to Light the Enterprise

 56

 } else {
 sfx.stop();
 digitalWrite(PHAS_PIN1, LOW);
 digitalWrite(PHAS_PIN2, LOW);
 phas1Flag = 0;
 phas2Flag = 0;
 randomFire();
 }
 return false;
}

bool fireRCS(const char *which) {
 if (warpFlag == 0) {
 if (strcmp(which, “trigger”) == 0) {
 int display = rcsPatterns[random(0,10)];
 digitalWrite(LTCH_PIN, LOW);
 shiftOut (DATA_PIN, CLK_PIN, MSBFIRST, display);
 digitalWrite(LTCH_PIN, HIGH);
 rcsTsk = sysTmr.in(200, fireRCS, “cancel”);
 } else {
 digitalWrite(LTCH_PIN, LOW);
 shiftOut (DATA_PIN, CLK_PIN, MSBFIRST, 0);
 digitalWrite(LTCH_PIN, HIGH);
 rcsTsk = sysTmr.in(random(RCS_LOW, RCS_HIGH), fireRCS, “trigger”);
 }
 }
 return false;
}

startUp() function

The startUp function is repetitively called by spotTsk, each time with a different parame-
ter, that goes from “spot1” to “spot7” and finally “rcs.” With each call to the function, a dif-
ferent spotlight is lit. With the final call, the spotTsk sets up the rcsTsk to call the fireRCS
function.

warpMode() function

This function is called when pin A5 (numbered pin 28) on the ATMega detects pin 1 (num-
bered pin 6) on the ATtiny is outputting a value greater than 800 or less than 600. Remem-
ber, the ATtiny pin is outputting PWM values from 0 to 1023. These values are somewhat ar-
bitrary and you may have to fiddle with these values. The analog input pin on the ATMega
we’re using has trouble reading PWM values, that’s why we’re bridging a 100µF electrolytic
capacitor from this pin to ground.

It’s still a little tricky to read the value of the ATtiny pin, and we’re aided by using warp-
Flag …
if (analogRead(WARP_DET) > 800 && warpFlag == 0) {

… to prevent multiple calls to the warpMode function. There’s also a delay() in the func-
tion that prevents any other actions occurring while the appropriate audio file is playing.
Because our strobes and nav lights are being driven by the ATtiny, we don’t really notice
the blocking delay.

Examining the sketches that drive the starship / randomFire() function

 57

randomFire() function

All the pins on the ATMega and ATtiny are used. On the ATMega, that means there’s only
pin connected to a fire weapons button, not separate buttons for fire phasers and torpe-
does. The randomFire function fires either phasers or torpedoes as many as six times but no
less than two, as specified at the start of the sketch:
const int FIRE_LOW = 2;
const int FIRE_HIGH = 7;

and in the main loop where the weapons fire button press is detected:
if (digitalRead(WEAP_BTN) == HIGH && !weapFlag && !startupFlag) { // prevents overlapping
fire and firing in spacedock
 fireLmt = random(FIRE_LOW,FIRE_HIGH); // max number weapons fire
 weapFlag = 1;
 randomFire();
}

fireLmt is set between the values in FIRE_LOW and FIRE_HIGH. Each time the randomFire
function is called it flips a coin whether to fire phasers or torpedoes. Both port and star-
board torpedoes fire, counting just once in the variable fireCnt. There are two pins on the
ATMega that fire different phaser LEDs. You might wire one of the pins to a phaser cannon
on the top of the saucer and one underneath or on the engineering hull. The function will
clip a coin which phaser to fire. You might be able to wire two LEDs to each pin to make
two phaser cannons light up at a time. It might overtax the current draw of the ATMega,
however. If that happens, you could direct the output of the pins to a transistor, just like we
do with the collision strobes and navigation lights on the ATtiny.

If the randomFire() function decides to fire phasers, it calls the firePhaser() function,
otherwise it calls the fireTorpedo() function.

When the fireCnt exceeds fireLmt, the randomFire() function ends after setting the
weapFlag to zero, making the weapons button active again.

firePhaser() function

This function is pretty simple. It rolls the dice as to which phaser to fire and then sets a flag,
either phas1Flag or phas2Flag, to high. Back in the main loop, there are two if state-
ments that check to see whether either of these flags are set. If one is, it sends an update to
an instance of the LedFlasher that corresponds to that phaser.

Remember that the main loop is constantly running. In the ATtiny sketch, we update
the LedFlasher instance for the strobes and nav loops every time the main loop runs. In
the ATMega sketch, we only want to update the phaser instances for the short period the
phasers are firing. Notice also that in the phasTsk assignment …
 phasTsk = sysTmr.in(random(250,750), firePhaser, “stop”);

… we’re doing another random() to vary the time the phaser fires from a quarter to
three-quarters of a second. We’re also playing the phaser sound effect and stopping it

Examining the board(s)﻿

 59

Examining the board(s)
Woof, that’s daunting! These two boards contain the essentials of the starship lighting/
audio circuit. You’ll notice the complete absence of LEDs because those are scattered
throught the Enterprise refit model. Also there are no buttons on the boards because they
will be mounted on the control panel of the display stand (see below).

This board is designed to sit outside the model, probably tucked away in the display
stand.1 Most of the wires you see dangling off the edge of the board need to enter the ship,
probably through the use of Dupont header pins. There are two sets of wires that connect
to the impulse/warp button and the weapons fire button. There’s another button that
connects to the reset pins of the ATtiny85 and the ATMega328. There’s a button that is the
switch that connects the 12V power supply with the 5V voltage regulator. And one wire
provides 12V power to the LED strips that provide the window lighting.

I have more or less followed the color code displayed above. Any pin that connects to

1	 You might be able to fit these board inside the saucer section, but it would make lighting the windows
difficult. It would be easier to distribute the circuit across a number of quarter perfboards.

A
B

C
D

E
F

G
H

I
J

+ +

– –

– –

+ +

A
B

C
D

E
F

G
H

I
J

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

A
B

C
D

E
F

G
H

I
J

+ +

– –

+ +
– –

A
B

C
D

E
F

G
H

I
J

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

} T
or

pe
do

es
} Phasers

12V

W
ea

po
ns

 b
tn

Is sound playing? Prevents reset

RC
S

1

Sp
ot

 1

Sp
ot

 2

Sp
ot

 3

Sp
ot

 4

Sp
ot

 5

Sp
ot

 6

Sp
ot

 7

W
ar

p

Co
lo

lis
io

n
st

ro
be

s

Im
pu

ls
e/

w
ar

p
bt

n

Im
pu

ls
e

RC
S

2

RC
S

3

RC
S

4

RC
S

5

RC
S

6

RC
S

7

RC
S

8

N
av

ig
at

io
n

lig
ht

s

N
ac

el
le

 g
lo

w

Power switch

RS
T

3
A

3

4
A

2

G
N

D

VC
C

A
1

2 ~1 ~0

ATtiny85

P
0
R
X

P
1
T
X

P
2

P
3
~

R
S
T

P
4

V
C
C

G
N
D

C
R
S

C
R
S

P
5
~

P
6
~

P
7

P
8

A
I
5

A
I
4

A
I
3

A
I
2

A
I
1

A
I
0

G
N
D

A
R

V
C
C

P
1
3

P
1
2

~
P
1
1

~
P
1
0

~
P
9

ATMega328

1B 2B 3B 4B 5B 6B 7B

16
C

15
C

14
C

13
C

12
C

11
C

10
C

8B
9C

G
N

D
CO

M

ULN2308A

Q
2

Q
3

Q
4

Q
5

Q
1

Q
6

Q
7

G
N

D

VC
C

Q
0

D
S

da
ta O
E

ST
CP

la
tc

h
SH

CP
cl

oc
k

M
R

Q
7’

74HC595

Sound Board
Rst

Gnd

V
i
n

B
U
S

V
o
l

PBTXRXUG+-CSGndRLGnd

10ActGnd 0123456789

IRF540N

2n

39
04

2n

39
04

2n

39
04

2n

39
04

LM7805

RED 5V/12V/weapons
BLK GND
GRN strobes/nav lights

YEL RCS/defl
WHT spots
BLU warp/crystals/defl

How to Light the Enterprise

 60

voltage is connected with red wire; to ground black wire; to any of the blinking lights
green; the the RCS thrusters or the deflector dish yellow; to the spotlights white; and to
anything indicating warp mode, including the deflector, blue.

Sound board

Let’s start with the quarter perfboard that holds the Adafruit FX Sound Board. As you can
see it takes up most of the board. You could solder directly to the holes on the sound
board, unless you opt to solder the supplied male header pins into those holes to make
it easier to use in a breadboard. In which case you would solder onto the holes of the
perfboard.

The sound board takes its power from the rails of the main board. The TX, RX, Act and
Rst pins of the sound board are connected to the ATMega. Notice also that UG connects to
GND, which puts the board into serial instead of trigger control. Finally, the two terminal
blocks connect to speakers.

Main board

The board is roughly divided into three areas, starting from the left up to column 15 with
the ATtiny85, four transistors and a MOSFET, all running the strobes_navs_deflector_on_
ATtiny.ino sketch. From column 16–50, you’ll find the 74HC595, the ATMega328 and the
ULN2803A. From column 56–60, you’ll find the LM7805 voltage regulator, two capacitors, a
barrel jack, diode and resettable fuse.

For illustration purposes, the wiring connecting components are shown sitting on the
board, but it would be a lot tidier to run those connections on the back side. The perfboard
shown is not a double-sided board and anything soldered into the back side connects to
the front.

All the chips on the board are facing left and as much as possible, I’ve tried to make
all the components face the same way. Also notice the top and bottom power rails are
bridged at columns 54 and 55.

Strobes, navs and deflector
You’ll notice four transistors surrounding the ATtiny. The first two on the left connect to the
pins that power the collision strobes and navigation lights. The flat face of the transistor is
facing us. There are 1KΩ pull-down resistors between the middle base leg of the transistor
and the pins on the chip. These transistors should have no problem powering the four
strobes and the nine navigation/formation lights.

The second pair of transistors on the right of the chip connect to the impulse and
warp pins. If you only cared about lighting the deflector, you could dispense with these
transistors and instead connect the impulse and warp pins to an amber/blue bi-color LED.
However, we want the impulse pin of the ATtiny to provide power to the amber glow of
the deflector, the amber glow of the impulse deflection crystal (the round dome aft of

Examining the board(s) / Main board

 61

the bridge) and the red glow of the impulse engine. Meanwhile, the warp pin will provide
power to the blue glow of the deflector, the blue glow of the magnatomic amplification
crystal (the smaller dome on the top and towards the front of the nacelles) and, of course,
the blue glow of the nacelles.

That’s too much for a single pin on the ATtiny, so instead we need the transistors to
switch the various LEDs to the main 5V supply. Unfortunately, this means the bi-color LED
no longer works because the signal coming from the transistors is a connection to ground,
whereas the amber and blue pins on the bi-color LED are expecting positive voltage. There
are ways around this, but the simplest solution is to just use separate amber and blue LEDs.

The output of the warp pin on the ATtiny is also connected to the IRF540N MOSFET. The
middle or drain leg of the MOSFET is connected to the ground pins of the LED strip in each
nacelle. The positive pin of the LED strip is connected to the 12V supply.

Spotlights, weapons, RCS thrusters, sound
The ATMega is surrounded by the 74HC595 shift register on the left and the ULN2803A
Darlington array on the right. In the upper left of the ATMega, you’ll see wires connecting it
to the clock, latch and data pins of the 595. The 595 controls the firing of the RCS thrusters.
Notice the connection to ground of the Output Enable pin and the connection to 5V on the
reset pin.

It’s easy to miss the wire connecting numbered pin 28 on the ATMega to the warp pin of
the ATtiny. This allows the sketch running the ATMega to know when the ship has gone to
warp. A little more obvious is the capacitor connecting pin 28 to ground, which smooths
out the PWM signal from the ATtiny is into a more readable serial signal.

To the middle of the top half the ATMega, there are several wires connecting to the
sound board, as well as power and ground connections to the Mega. You’ll also find a wire
that connects to the weapons button and wires that connect to the torpedo launchers.

Starting on the bottom left of the ATMega, there’s a 10KΩ pull-down resistor connecting
to the reset pin and two wires connecting to the phasers. Each of the phaser pins might be
able to connect to two LEDs, but to be certain or to light more even more LEDs, it would
be best to run the output of these pins to transistors. There is room on the main board
between columns 51–55 to put two transistors for this purpose. They would be wired much
the same way as the strobe and nav lights on the ATtiny.

Most of the rest of the bottom of the ATMega connects to the Darlington array,
numbered pins 4–6 and 11–14. The remaining pins connect to power and ground or read
the 16Mhz clock crystal.

Power supply
And finally, the power supply, which takes up only a few columns and is built around the
LM7805 voltage regulator. What’s not shown is the heatsink attached to the back of the
7805 because that would have obscured the view of the two capacitors. But you can read
more about that here.

How to Light the Enterprise

 62

555 PWM LED strip dimmer

Here’s the board that can dim the LED window light-
ing strips that’s mentioned in the Lights and Sound
chapter. It only requires a quarter size prototyping
board and actually still has room for other uses.

The two diodes used are the same 1N4001 diodes used
in the board power supply. Notice how their opposite
orientations. It doesn’t matter which faces left or right, as
long as they differ. Your choice, however, does affect the
behavior of the potentiometer, whether a clockwise turn
increases brightness or reduces it.

The two ceramic capacitors are both 0.01uF. The resistor across pins 8 and 7 of the 555 is
1KΩ and the one across the gate and source pins of the IRF540N is 10KΩ.

Notice the drain leg is connected to the GND pin of the various LED strips. The V+ pins
of the strips is connected to the V+ of the 12V power supply. The GND of the 12V power
supply should also be connected to this board, but that’s already accomplished if the board
is getting its 5V supply from the main board.

A
B

C
D

E
F

G
H

I
J

+ +

– –

+ +

– –

A
B

C
D

E
F

G
H

I
J

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

IRF540N

to GND of
LED strip

from GND
of 12V supply

GND
5V

From 12V supply
to + of LED strip

G
N

D

TR
G

O
U

T

RS
T

VC
C

D
CH TH

R

C
TL

555

